Morphology of supported nanoparticles

An short review of the shape of supported nanoparticles is presented. In the first part of this review the basic theoretical concepts governing the shape of crystals are given. The validity of the concepts of equilibrium shape for crystals with nanometer dimensions is discussed as well as the influence of the support. The effect of the growth kinetics on the particle shape is also discussed. In the second part, several examples of metal (Au and Pd) nanoparticles supported on MgO, mica and graphite substrates are given to demonstrate the utility of the main experimental techniques (TEM, STM, AFM, GISAXS) used to observe the morphology of nanocrystals.

[1]  C. Mirkin,et al.  Photoinduced Conversion of Silver Nanospheres to Nanoprisms , 2001, Science.

[2]  Takayoshi Hayashi,et al.  Formation of Ultrafine Metal Particles by Gas-Evaporation Technique. IV. Crystal Habits of Iron and Fcc Metals, Al, Co, Ni, Cu, Pd, Ag, In, Au and Pb , 1977 .

[3]  M. Bäumer,et al.  Determination of atomic structure of the metal-oxide interface: Pd nanodeposits on an FeO(111) film. , 2003, Physical review letters.

[4]  砂川 一郎 On the Morphology of Crystals , 1875, Nature.

[5]  F. Baletto,et al.  Modeling free and supported metallic nanoclusters: structure and dynamics , 2004 .

[6]  Fabien Silly,et al.  Selecting the shape of supported metal nanocrystals: Pd huts, hexagons, or pyramids on SrTiO3(001). , 2005, Physical review letters.

[7]  Hans-Joachim Freund,et al.  Palladium Nanocrystals on Al 2 O 3 : Structure and Adhesion Energy , 1999 .

[8]  S. Granjeaud,et al.  Ultrahigh vacuum and air observations of Pd clusters grown on clean graphite , 1991 .

[9]  D. Keller Reconstruction of STM and AFM images distorted by finite-size tips , 1991 .

[10]  Jensen,et al.  Changing shapes in the nanoworld , 2000, Physical review letters.

[11]  M. Antognozzi,et al.  Fabrication of Nano-Tips by Carbon Contamination in a Scanning Electron Microscope for Use in Scanning Probe Microscopy and Field Emission , 1997 .

[12]  S. Giorgio,et al.  Shape variations of Pd particles under oxygen adsorption , 1998 .

[13]  S. Giorgio,et al.  Structure and morphology of small palladium particles (2–6 nm) supported on MgO micro-cubes , 1990 .

[14]  Ivan V. Markov,et al.  Crystal growth for beginners , 1995 .

[15]  I. Nishida,et al.  An Electron Microscope and Electron Diffraction Study of Fine Smoke Particles Prepared by Evaporation in Argon Gas at Low Pressures (II) , 1967 .

[16]  J. Venables Introduction to surface and thin film processes , 2000 .

[17]  C. Henry,et al.  Atomic Scale Imaging by UHV-AFM of Nanosized Gold Particles on Mica , 2001 .

[18]  H. Dai,et al.  Nanotubes as nanoprobes in scanning probe microscopy , 1996, Nature.

[19]  C. Henry,et al.  Atomic resolution imaging of the (001) surface of UHV cleaved MgO by dynamic scanning force microscopy. , 2003, Physical review letters.

[20]  P. Müller,et al.  Three-dimensional towards two-dimensional coherent epitaxy initiated by surfactants , 1995 .

[21]  M. Yacamán,et al.  HIGH-RESOLUTION DARK-FIELD ELECTRON MICROSCOPY OF SMALL METAL PARTICLES. , 1977 .

[22]  J. Heyraud,et al.  SEM studies of equilibrium forms: Roughening transition and surface melting of indium and lead crystals , 1989 .

[23]  T. C. Green,et al.  Shape-Controlled Synthesis of Colloidal Platinum Nanoparticles , 1996, Science.

[24]  G. Renaud Oxide surfaces and metal/oxide interfaces studied by grazing incidence X-ray scattering , 1998 .

[25]  M. Pileni,et al.  COBALT NANOSIZED PARTICLES ORGANIZED IN A 2D SUPERLATTICE : SYNTHESIS, CHARACTERIZATION, AND MAGNETIC PROPERTIES , 1999 .

[26]  K. Kern,et al.  Building one- and two-dimensional nanostructures by diffusion-controlled aggregation at surfaces , 1993, Nature.

[27]  Jens R. Rostrup-Nielsen,et al.  Atom-Resolved Imaging of Dynamic Shape Changes in Supported Copper Nanocrystals , 2002, Science.

[28]  J. Goniakowski,et al.  Theoretical study of the atomic structure of Pd nanoclusters deposited on a MgO(100) surface , 2002 .

[29]  A. Humbert,et al.  Atomic resolution on small three-dimensional metal clusters by STM , 1997 .

[30]  S. Giorgio,et al.  High-resolution transmission electron microscopy studies of structural deformations at the interface between Pd particles and MgO surfaces , 1993 .

[31]  D. Srolovitz,et al.  Polycrystalline surface properties from spherical crystallites: Ag, Au, Cu and Pt , 1994 .

[32]  M. Hammar,et al.  In situ ultrahigh vacuum transmission electron microscopy studies of hetero-epitaxial growth I. {Si(001) }/{Ge} , 1996 .

[33]  J. Storhoff,et al.  Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. , 1997, Science.

[34]  G. Wulff,et al.  XXV. Zur Frage der Geschwindigkeit des Wachsthums und der Auflösung der Krystallflächen , 1901 .

[35]  C. R. Chris Wang,et al.  Gold Nanorods: Electrochemical Synthesis and Optical Properties , 1997 .

[36]  W. Mullins,et al.  Nucleation Barrier for Volume‐Conserving Shape Changes of Faceted Crystals , 2000 .

[37]  I. Stensgaard,et al.  Copper clusters on Al2O3/NiAl(110) studied with STM , 2001 .

[38]  L. Marks Particle size effects on Wulff constructions , 1985 .

[39]  Claude R. Henry,et al.  Quantitative analysis of grazing incidence small-angle x-ray scattering: Pd/MgO(001) growth , 2004 .

[40]  M. Pileni The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals , 2003, Nature materials.

[41]  Heinrich Rohrer,et al.  7 × 7 Reconstruction on Si(111) Resolved in Real Space , 1983 .

[42]  M. Reichling,et al.  Imaging the atomic arrangements on the high-temperature reconstructed α-Al2O3(0001) surface , 2001, Nature.

[43]  F. Giessibl,et al.  Atomic Resolution of the Silicon (111)-(7x7) Surface by Atomic Force Microscopy , 1995, Science.

[44]  C. Henry,et al.  High-resolution imaging of gold clusters on KBr(001) surfaces investigated by dynamic scanning force microscopy , 2004 .

[45]  S. Giorgio,et al.  Effect of the interface structure on the high-temperature morphology of supported metal clusters , 2001 .

[46]  W. Caseri,et al.  Oriented pearl-necklace arrays of metallic nanoparticles in polymers : a new route toward polarization-dependent color filters , 1999 .

[47]  Bert Voigtländer,et al.  Fundamental processes in Si/Si and Ge/Si epitaxy studied by scanning tunneling microscopy during growth , 2001 .

[48]  Jerome B. Cohen,et al.  Grazing-incidence small-angle X-ray scattering: new tool for studying thin film growth , 1989 .

[49]  Y. Sugawara,et al.  The atomic resolution imaging of metallic Ag(111) surface by noncontact atomic force microscope , 1999 .

[50]  P. Midgley,et al.  3D electron microscopy in the physical sciences: the development of Z-contrast and EFTEM tomography. , 2003, Ultramicroscopy.

[51]  Claude R. Henry,et al.  Surface studies of supported model catalysts , 1998 .

[52]  W. K. Burton,et al.  The growth of crystals and the equilibrium structure of their surfaces , 1951, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[53]  N. Ming,et al.  Twin lamellae as possible self-perpetuating step sources , 1988 .

[54]  Thomas A. Read,et al.  Physics of Powder Metallurgy , 1949 .

[55]  P. Müller,et al.  Equilibrium nano-shape changes induced by epitaxial stress (generalised Wulf-Kaishew theorem) , 2000 .

[56]  Jacques Jupille,et al.  Real-Time Monitoring of Growing Nanoparticles , 2003, Science.

[57]  Andrzej Wieckowski,et al.  Catalysis and Electrocatalysis at Nanoparticle Surfaces , 2003 .

[58]  B. Mutaftschiev The atomistic nature of crystal growth , 2001 .