Quantitative proteomic Isotope-Coded Protein Label (ICPL) analysis reveals alteration of several functional processes in the glioblastoma.

[1]  P. Boston,et al.  Human 14‐3‐3 Protein: Radioimmunoassay, Tissue Distribution, and Cerebrospinal Fluid Levels in Patients with Neurological Disorders , 1982, Journal of neurochemistry.

[2]  H. Sandler,et al.  Malignant astrocytomas: focal tumor recurrence after focal external beam radiation therapy. , 1991, Journal of neurosurgery.

[3]  Marcel Leist,et al.  Eradication of glioblastoma, and breast and colon carcinoma xenografts by Hsp70 depletion. , 2002, Cancer research.

[4]  C. Pineau,et al.  New Insights into the Rat Spermatogonial Proteome , 2003, Molecular & Cellular Proteomics.

[5]  S. Atlas,et al.  Magnetic resonance image–guided proteomics of human glioblastoma multiforme , 2003, Journal of magnetic resonance imaging : JMRI.

[6]  W. Hamel,et al.  Pattern of Recurrence following Local Chemotherapy with Biodegradable Carmustine (BCNU) Implants in Patients with Glioblastoma , 2004, Journal of Neuro-Oncology.

[7]  E. Birney,et al.  The International Protein Index: An integrated database for proteomics experiments , 2004, Proteomics.

[8]  A. Schmidt,et al.  A novel strategy for quantitative proteomics using isotope‐coded protein labels , 2005, Proteomics.

[9]  Vani Santosh,et al.  Differential protein expression in human gliomas and molecular insights , 2005, Proteomics.

[10]  Bruno Zanotti,et al.  Proteomic studies on low- and high-grade human brain astrocytomas. , 2005, Journal of proteome research.

[11]  R. Kiss,et al.  Possible future issues in the treatment of glioblastomas: special emphasis on cell migration and the resistance of migrating glioblastoma cells to apoptosis. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[12]  H. Zhen,et al.  Immunocytochemical detection of 14-3-3 in primary nervous system tumors , 2006, Journal of Neuro-Oncology.

[13]  D. Sawyer,et al.  Heat shock proteins in cancer: chaperones of tumorigenesis. , 2006, Trends in biochemical sciences.

[14]  Friedrich Lottspeich,et al.  Quantitative analysis of 2,3,7,8‐tetrachlorodibenzo‐p‐dioxin‐induced proteome alterations in 5L rat hepatoma cells using isotope‐coded protein labels , 2006, Proteomics.

[15]  Ashraf A Khalil,et al.  Biomarker discovery: A proteomic approach for brain cancer profiling , 2007, Cancer science.

[16]  J. Mcculloch,et al.  Proteomic analysis of gliomas , 2007, British journal of neurosurgery.

[17]  B. Scheithauer,et al.  The 2007 WHO classification of tumours of the central nervous system , 2007, Acta Neuropathologica.

[18]  Frédéric Chalmel,et al.  The Annotation, Mapping, Expression and Network (AMEN) suite of tools for molecular systems biology , 2008, BMC Bioinformatics.

[19]  P. Wen,et al.  The 1p-encoded protein stathmin and resistance of malignant gliomas to nitrosoureas. , 2007, Journal of the National Cancer Institute.

[20]  Ron Orlando,et al.  Up-regulation of NG2 proteoglycan and interferon-induced transmembrane proteins 1 and 3 in mouse astrocytoma: a membrane proteomics approach. , 2008, Cancer letters.

[21]  D. Busam,et al.  An Integrated Genomic Analysis of Human Glioblastoma Multiforme , 2008, Science.

[22]  R. Kiss,et al.  Na+/K+-ATPase α subunits as new targets in anticancer therapy , 2008 .

[23]  Gerhard Körting,et al.  Managing Proteomics Data: From Generation and Data Warehousing to Central Data Repository , 2008 .

[24]  J. Kellermann ICPL--isotope-coded protein label. , 2008, Methods in molecular biology.

[25]  R. Kiss,et al.  TARGETING THE α 1 SUBUNIT OF THE SODIUM PUMP TO COMBAT GLIOBLASTOMA CELLS , 2008, Neurosurgery.

[26]  R. Kiss,et al.  The sodium pump alpha1 subunit as a potential target to combat apoptosis-resistant glioblastomas. , 2008, Neoplasia.

[27]  Santosh Kesari,et al.  Malignant gliomas in adults. , 2008, The New England journal of medicine.

[28]  Lennart Martens,et al.  PRIDE Converter: making proteomics data-sharing easy , 2009, Nature Biotechnology.

[29]  Z. Fei,et al.  Targeting 14-3-3 protein, difopein induces apoptosis of human glioma cells and suppresses tumor growth in mice , 2010, Apoptosis.

[30]  Hans-Peter Lenhof,et al.  Proteomic study of human glioblastoma multiforme tissue employing complementary two-dimensional liquid chromatography- and mass spectrometry-based approaches. , 2009, Journal of proteome research.

[31]  R. Stupp,et al.  Malignant glioma: ESMO clinical recommendations for diagnosis, treatment and follow-up. , 2008, Annals of oncology : official journal of the European Society for Medical Oncology.

[32]  G. Iacob,et al.  Current data and strategy in glioblastoma multiforme , 2009, Journal of medicine and life.

[33]  B. Cho,et al.  Multifarious proteomic signatures and regional heterogeneity in glioblastomas , 2009, Journal of Neuro-Oncology.

[34]  Herbert Thiele,et al.  Bioinformatics Strategies in Life Sciences: From Data Processing and Data Warehousing to Biological Knowledge Extraction , 2009, GI Jahrestagung.

[35]  Connie R. Jimenez,et al.  iTRAQ-based Proteomics Profiling Reveals Increased Metabolic Activity and Cellular Cross-talk in Angiogenic Compared with Invasive Glioblastoma Phenotype* , 2009, Molecular & Cellular Proteomics.

[36]  Yuquan Wei,et al.  Quantitative protein expression profiling of 14‐3‐3 isoforms in human renal carcinoma shows 14‐3‐3 epsilon is involved in limitedly increasing renal cell proliferation , 2009, Electrophoresis.

[37]  J. Kelly,et al.  Identification of secreted proteins regulated by cAMP in glioblastoma cells using glycopeptide capture and label‐free quantification , 2009, Proteomics.

[38]  Hong Lin,et al.  Isoform-specific expression of 14-3-3 proteins in human astrocytoma , 2009, Journal of the Neurological Sciences.

[39]  D. Morrison,et al.  The 14-3-3 proteins: integrators of diverse signaling cues that impact cell fate and cancer development. , 2009, Trends in cell biology.

[40]  A. Ross,et al.  Global Targeting of Subcellular Heat Shock Protein-90 Networks for Therapy of Glioblastoma , 2010, Molecular Cancer Therapeutics.

[41]  J. Mcculloch,et al.  Glioma Pathophysiology: Insights Emerging from Proteomics , 2010, Brain pathology.

[42]  Charles E. Vejnar,et al.  Loss of Dicer in Sertoli Cells Has a Major Impact on the Testicular Proteome of Mice , 2010, Molecular & Cellular Proteomics.

[43]  Oscar Persson,et al.  Plasma proteome profiling reveals biomarker patterns associated with prognosis and therapy selection in glioblastoma multiforme patients , 2010, Proteomics. Clinical applications.

[44]  S. Niclou,et al.  Glioma proteomics: status and perspectives. , 2010, Journal of proteomics.

[45]  Jean Mosser,et al.  Differential analysis of glioblastoma multiforme proteome by a 2D-DIGE approach , 2011, Proteome Science.

[46]  Hong Lin,et al.  14-3-3Zeta Positive Expression is Associated With a Poor Prognosis in Patients With Glioblastoma , 2011, Neurosurgery.

[47]  Friedrich Lottspeich,et al.  ICPL labeling strategies for proteome research. , 2011, Methods in molecular biology.

[48]  D. Hayes,et al.  Gene expression profiling of gliomas: merging genomic and histopathological classification for personalised therapy , 2010, British Journal of Cancer.

[49]  S. Deraz,et al.  Heat shock proteins in oncology: diagnostic biomarkers or therapeutic targets? , 2011, Biochimica et biophysica acta.