Ultrafast Aqueous Potassium‐Ion Batteries Cathode for Stable Intermittent Grid‐Scale Energy Storage

[1]  J. Neuefeind,et al.  Structural water engaged disordered vanadium oxide nanosheets for high capacity aqueous potassium-ion storage , 2017, Nature Communications.

[2]  Wei Zhang,et al.  Synthesis of Monocrystalline Nanoframes of Prussian Blue Analogues by Controlled Preferential Etching. , 2016, Angewandte Chemie.

[3]  Yi Cui,et al.  Highly reversible open framework nanoscale electrodes for divalent ion batteries. , 2013, Nano letters.

[4]  Ahmad Azmin Mohamad,et al.  Advances of aqueous rechargeable lithium-ion battery: A review , 2015 .

[5]  Graeme Henkelman,et al.  Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery. , 2015, Journal of the American Chemical Society.

[6]  Bruce Dunn,et al.  High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. , 2013, Nature materials.

[7]  Linda F. Nazar,et al.  Crystallite Size Control of Prussian White Analogues for Nonaqueous Potassium-Ion Batteries , 2017 .

[8]  N. Sharma,et al.  An Initial Review of the Status of Electrode Materials for Potassium‐Ion Batteries , 2017 .

[9]  Yi Cui,et al.  Copper hexacyanoferrate battery electrodes with long cycle life and high power. , 2011, Nature communications.

[10]  Wenhao Ren,et al.  Emerging Prototype Sodium-Ion Full Cells with Nanostructured Electrode Materials. , 2017, Small.

[11]  Yang Xu,et al.  Potassium Prussian Blue Nanoparticles: A Low‐Cost Cathode Material for Potassium‐Ion Batteries , 2017 .

[12]  A. Manthiram,et al.  Low-Cost High-Energy Potassium Cathode. , 2017, Journal of the American Chemical Society.

[13]  F. Scholz,et al.  Lattice contractions and expansions accompanying the electrochemical conversions of Prussian blue and the reversible and irreversible insertion of rubidium and thallium ions , 1996 .

[14]  Xiulin Fan,et al.  Flexible Aqueous Li‐Ion Battery with High Energy and Power Densities , 2017, Advanced materials.

[15]  Y. Gogotsi,et al.  True Performance Metrics in Electrochemical Energy Storage , 2011, Science.

[16]  Jun Liu,et al.  Electrochemical energy storage for green grid. , 2011, Chemical reviews.

[17]  Zelang Jian,et al.  Prussian white analogues as promising cathode for non-aqueous potassium-ion batteries , 2017 .

[18]  Andrew J. Binder,et al.  Mesoporous Prussian blue analogues: template-free synthesis and sodium-ion battery applications. , 2014, Angewandte Chemie.

[19]  Selena M. Russell,et al.  Advanced High-Voltage Aqueous Lithium-Ion Battery Enabled by "Water-in-Bisalt" Electrolyte. , 2016, Angewandte Chemie.

[20]  D. Su,et al.  Biphase Cobalt–Manganese Oxide with High Capacity and Rate Performance for Aqueous Sodium‐Ion Electrochemical Energy Storage , 2018 .

[21]  Xiaoli Dong,et al.  Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life , 2016, Science Advances.

[22]  J. Tarascon,et al.  Towards greener and more sustainable batteries for electrical energy storage. , 2015, Nature chemistry.

[23]  Andrew McDonagh,et al.  High‐Capacity Aqueous Potassium‐Ion Batteries for Large‐Scale Energy Storage , 2017, Advanced materials.

[24]  Bruce Dunn,et al.  Multidimensional materials and device architectures for future hybrid energy storage , 2016, Nature Communications.

[25]  F. Pan,et al.  Engineering Fast Ion Conduction and Selective Cation Channels for a High-Rate and High-Voltage Hybrid Aqueous Battery. , 2018, Angewandte Chemie.

[26]  Yi Cui,et al.  The Effect of Insertion Species on Nanostructured Open Framework Hexacyanoferrate Battery Electrodes , 2011 .

[27]  Wenhao Ren,et al.  Activation of Sodium Storage Sites in Prussian Blue Analogues via Surface Etching. , 2017, Nano letters.

[28]  Yi Cui,et al.  Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries. , 2011, Nano letters.

[29]  Yi Cui,et al.  Reversible Multivalent (Monovalent, Divalent, Trivalent) Ion Insertion in Open Framework Materials , 2015 .

[30]  Xiaodong Chen,et al.  Rational material design for ultrafast rechargeable lithium-ion batteries. , 2015, Chemical Society reviews.

[31]  Yu Huang,et al.  Holey graphene frameworks for highly efficient capacitive energy storage , 2014, Nature Communications.

[32]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[33]  Wenhua Zuo,et al.  Bismuth oxide: a versatile high-capacity electrode material for rechargeable aqueous metal-ion batteries , 2016 .

[34]  G. Soloveichik Battery technologies for large-scale stationary energy storage. , 2011, Annual review of chemical and biomolecular engineering.

[35]  Yong Li,et al.  Prussian Blue@C Composite as an Ultrahigh‐Rate and Long‐Life Sodium‐Ion Battery Cathode , 2016 .

[36]  Chaojiang Niu,et al.  Self-sacrificed synthesis of three-dimensional Na3V2(PO4)3 nanofiber network for high-rate sodium–ion full batteries , 2016 .

[37]  C. Zhi,et al.  Tunable Free‐Standing Ultrathin Porous Nickel Film for High Performance Flexible Nickel–Metal Hydride Batteries , 2018 .