SUPERANALYSIS. I. DIFFERENTIAL CALCULUS
暂无分享,去创建一个
[1] F. Berezin,et al. Method of Second Quantization , 1966 .
[2] J. L. Martin,et al. Generalized classical dynamics, and the ‘classical analogue’ of a Fermioscillator , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[3] V. S. Vladimirov,et al. Methods of the theory of functions of many complex variables Cambridge , 2007 .
[4] J. Dieudonne. Foundations of Modern Analysis , 1969 .
[5] A. Jadczyk,et al. Superspaces and supersymmetries , 1981 .
[6] R. Jost. General Theory of Quantized Fields , 1965 .
[7] M. Quirós,et al. Superfiber bundle structure of gauge theories with Faddeev–Popov fields , 1982 .
[8] E. Blum. A theory of analytic functions in Banach algebras , 1955 .
[9] E. Witten. An interpretation of classical Yang-Mills theory , 1978 .
[10] C. Wall,et al. Lie Algebras And Lie Groups , 1967, The Mathematical Gazette.
[11] Anatolii A. Logunov,et al. Introduction to axiomatic quantum field theory , 1975 .
[12] S. Fomin,et al. Elements of the Theory of Functions and Functional Analysis , 1961 .
[13] N. N. Bogoliubov,et al. Introduction to the theory of quantized fields , 1960 .
[14] I. Volovich. On super-self-duality equations , 1983 .
[15] B. Kostant,et al. Graded manifolds, graded Lie theory, and prequantization , 1977 .
[16] A. Schwarz. Supergravity, complex geometry andG-structures , 1982 .
[17] B. Zumino,et al. Supergauge Transformations in Four-Dimensions , 1974 .
[18] A. Rogers. A Global Theory of Supermanifolds , 1980 .
[19] P. W. Ketchum. Analytic functions of hypercomplex variables , 1928 .