SUPERANALYSIS. I. DIFFERENTIAL CALCULUS

[1]  F. Berezin,et al.  Method of Second Quantization , 1966 .

[2]  J. L. Martin,et al.  Generalized classical dynamics, and the ‘classical analogue’ of a Fermioscillator , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[3]  V. S. Vladimirov,et al.  Methods of the theory of functions of many complex variables Cambridge , 2007 .

[4]  J. Dieudonne Foundations of Modern Analysis , 1969 .

[5]  A. Jadczyk,et al.  Superspaces and supersymmetries , 1981 .

[6]  R. Jost General Theory of Quantized Fields , 1965 .

[7]  M. Quirós,et al.  Superfiber bundle structure of gauge theories with Faddeev–Popov fields , 1982 .

[8]  E. Blum A theory of analytic functions in Banach algebras , 1955 .

[9]  E. Witten An interpretation of classical Yang-Mills theory , 1978 .

[10]  C. Wall,et al.  Lie Algebras And Lie Groups , 1967, The Mathematical Gazette.

[11]  Anatolii A. Logunov,et al.  Introduction to axiomatic quantum field theory , 1975 .

[12]  S. Fomin,et al.  Elements of the Theory of Functions and Functional Analysis , 1961 .

[13]  N. N. Bogoliubov,et al.  Introduction to the theory of quantized fields , 1960 .

[14]  I. Volovich On super-self-duality equations , 1983 .

[15]  B. Kostant,et al.  Graded manifolds, graded Lie theory, and prequantization , 1977 .

[16]  A. Schwarz Supergravity, complex geometry andG-structures , 1982 .

[17]  B. Zumino,et al.  Supergauge Transformations in Four-Dimensions , 1974 .

[18]  A. Rogers A Global Theory of Supermanifolds , 1980 .

[19]  P. W. Ketchum Analytic functions of hypercomplex variables , 1928 .