A skew extension of the slash distribution via beta-normal distribution

In this work we introduce a generalization of the slash distribution using beta-normal distribution. This newly defined generalization is more flexible than the ordinary slash distribution and contains distributions that can be not only symmetric and unimodal, but also asymmetric and bimodal. We study the properties of the new generalized distribution and demonstrate its use on some real data sets considering maximum likelihood estimation procedure.

[1]  F. Famoye,et al.  BETA-NORMAL DISTRIBUTION AND ITS APPLICATIONS , 2002 .

[2]  Hea-Jung Kim,et al.  On a class of two-piece skew-normal distributions , 2005 .

[3]  W. Rogers,et al.  Understanding some long-tailed symmetrical distributions , 1972 .

[4]  Héctor W. Gómez,et al.  A new family of slash-distributions with elliptical contours , 2007 .

[5]  Olcay Arslan Maximum likelihood parameter estimation for the multivariate skew-slash distribution , 2009 .

[6]  A generalized skew two-piece skew-normal distribution , 2011 .

[7]  Felix Famoye,et al.  Journal of Modern Applied StatisticalMethods Beta-Weibull Distribution: Some Properties and Applications to Censored Data , 2022 .

[8]  Stephan Morgenthaler,et al.  Robust Confidence Intervals for a Location Parameter: The Configural Approach , 1986 .

[9]  Gauss M. Cordeiro,et al.  The beta exponentiated Weibull distribution , 2013 .

[10]  D. Kundu,et al.  Theory & Methods: Generalized exponential distributions , 1999 .

[11]  Heleno Bolfarine,et al.  Epsilon Birnbaum–Saunders distribution family: properties and inference , 2011 .

[12]  A. Azzalini A class of distributions which includes the normal ones , 1985 .

[13]  Gauss M. Cordeiro,et al.  The beta Laplace distribution , 2011 .

[14]  M. Jamshidian A Note on parameter and standard error estimation in adaptive robust regression , 2001 .

[15]  Saralees Nadarajah,et al.  Multitude of Laplace distributions , 2008 .

[16]  Gauss M. Cordeiro,et al.  The beta generalized half-normal distribution , 2010, Comput. Stat. Data Anal..

[17]  Gauss M. Cordeiro,et al.  The beta generalized exponential distribution , 2008, 0809.1889.

[18]  Richard L. Smith,et al.  A Comparison of Maximum Likelihood and Bayesian Estimators for the Three‐Parameter Weibull Distribution , 1987 .

[19]  M. Genton,et al.  Flexible Class of Skew‐Symmetric Distributions , 2004 .

[20]  Heleno Bolfarine,et al.  Skew‐symmetric distributions generated by the distribution function of the normal distribution , 2007 .

[21]  K. Kafadar A Biweight Approach to the One-Sample Problem , 1982 .

[22]  M. C. Jones,et al.  A skew extension of the t‐distribution, with applications , 2003 .

[23]  Ali I. Genç A Generalization of the Univariate Slash by a Scale-Mixtured Exponential Power Distribution , 2007, Commun. Stat. Simul. Comput..

[24]  Samuel Kotz,et al.  The beta exponential distribution , 2006, Reliab. Eng. Syst. Saf..

[25]  Olcay Arslan,et al.  A generalization of the multivariate slash distribution , 2009 .

[26]  Heleno Bolfarine,et al.  Large-Sample Inference for the Epsilon-Skew-t Distribution , 2007 .

[27]  Saralees Nadarajah,et al.  On the Moments of the Beta Normal Distribution , 2005 .

[28]  S. Nadarajah,et al.  The beta Gumbel distribution , 2004 .

[29]  Olcay Arslan,et al.  An alternative multivariate skew-slash distribution , 2008 .

[30]  M. Genton,et al.  The multivariate skew-slash distribution , 2006 .

[31]  Explicit expressions for moments of the beta Weibull distribution , 2008, 0809.1860.

[32]  A. Azzalini,et al.  Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution , 2003, 0911.2342.