Differential Geometry and Lie Groups
暂无分享,去创建一个
[1] Yvette Kosmann-Schwarzbach,et al. Groups and Symmetries , 2022, Universitext.
[2] Y. Wong,et al. Differentiable Manifolds , 2009 .
[3] Kristopher Tapp,et al. Matrix Groups for Undergraduates , 2016 .
[4] Brigitte Maier,et al. Fundamentals Of Differential Geometry , 2016 .
[5] Karolin Papst,et al. Functions Of Mathematical Physics , 2016 .
[6] F. Catanese. Topological methods in algebraic geometry , 2015 .
[7] Marcelo Siqueira,et al. Parametric pseudo-manifolds , 2012 .
[8] N. Dragon. The Geometry of Special Relativity: A Concise Course , 2012 .
[9] G. Naber,et al. The Theory of Spinors , 2012 .
[10] Jean Gallier,et al. Geometric Methods and Applications , 2011 .
[11] R. Cooke. Real and Complex Analysis , 2011 .
[12] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[13] Y. Kosmann-Schwarzbach. Groups and Symmetries: From Finite Groups to Lie Groups , 2009 .
[14] J. Fourier. Théorie analytique de la chaleur , 2009 .
[15] Levent Tunçel,et al. Optimization algorithms on matrix manifolds , 2009, Math. Comput..
[16] R. Wilson. The classical groups , 2009 .
[17] Nicholas Ayache,et al. A Fast and Log-Euclidean Polyaffine Framework for Locally Linear Registration , 2009, Journal of Mathematical Imaging and Vision.
[18] J. Gallier. Logarithms and Square Roots of Real Matrices , 2008, 0805.0245.
[19] Loring W. Tu,et al. An introduction to manifolds , 2007 .
[20] Nicholas Ayache,et al. Geometric Means in a Novel Vector Space Structure on Symmetric Positive-Definite Matrices , 2007, SIAM J. Matrix Anal. Appl..
[21] Vincent Arsigny,et al. Processing Data in Lie Groups : An Algebraic Approach. Application to Non-Linear Registration and Diffusion Tensor MRI. (Traitement de données dans les groupes de Lie : une approche algébrique. Application au recalage non-linéaire et à l'imagerie du tenseur de diffusion) , 2006 .
[22] A. Fordy. AN INTRODUCTION TO LIE GROUPS AND THE GEOMETRY OF HOMOGENEOUS SPACES (Student Mathematical Library 22) , 2006 .
[23] Xavier Pennec,et al. Intrinsic Statistics on Riemannian Manifolds: Basic Tools for Geometric Measurements , 2006, Journal of Mathematical Imaging and Vision.
[24] Nicholas Ayache,et al. Polyrigid and polyaffine transformations: A novel geometrical tool to deal with non-rigid deformations - Application to the registration of histological slices , 2005, Medical Image Anal..
[25] N. Higham. The Scaling and Squaring Method for the Matrix Exponential Revisited , 2005, SIAM J. Matrix Anal. Appl..
[26] R. Osserman,et al. A Panoramic View of Riemannian Geometry. , 2005 .
[27] M. Marias. Analysis on Manifolds , 2005 .
[28] A. Bobenko. Compact Riemann Surfaces , 2005 .
[29] B. Hall. Lie Groups, Lie Algebras, and Representations: An Elementary Introduction , 2004 .
[30] A. Kirillov. Lectures on the Orbit Method , 2004 .
[31] W. Fulton,et al. Lie Algebras and Lie Groups , 2004 .
[32] H. O. Erdin. Characteristic Classes , 2004 .
[33] Marion Kee,et al. Analysis , 2004, Machine Translation.
[34] Andreas Arvanitoyeorgos,et al. An Introduction to Lie Groups and the Geometry of Homogeneous Spaces , 2003 .
[35] A. Baker. Matrix Groups: An Introduction to Lie Group Theory , 2003 .
[36] Robin Green,et al. Spherical Harmonic Lighting: The Gritty Details , 2003 .
[37] John M. Lee. Introduction to Smooth Manifolds , 2002 .
[38] W. Rossmann. Lie Groups: An Introduction through Linear Groups , 2002 .
[39] A. Deitmar. A First Course in Harmonic Analysis , 2002 .
[40] W. Kühnel. Differential Geometry: Curves - Surfaces - Manifolds , 2002 .
[41] B. Dundas,et al. DIFFERENTIAL TOPOLOGY , 2002 .
[42] A. Blumberg. BASIC TOPOLOGY , 2002 .
[43] Kostas Daniilidis,et al. Catadioptric projective geometry: theory and applications , 2002 .
[44] Ronen Basri,et al. Lambertian reflectance and linear subspaces , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.
[45] Nicholas J. Higham,et al. Approximating the Logarithm of a Matrix to Specified Accuracy , 2000, SIAM J. Matrix Anal. Appl..
[46] 森田 茂之,et al. Geometry of differential forms , 2001 .
[47] A. Borel. Essays in the history of Lie groups and algebraic groups , 2001 .
[48] Ernst Hairer. Analyse II (Calcul Différentiel et Equations Différentielles) , 1999 .
[49] W. Hsiang,et al. Lectures on Lie Groups , 1998 .
[50] Alan Edelman,et al. The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..
[51] I. Madsen,et al. From Calculus to Cohomology: De Rham Cohomology and Characteristic Classes , 1997 .
[52] S. Rosenberg. The Laplacian on a Riemannian Manifold: The Laplacian on a Riemannian Manifold , 1997 .
[53] J. Lafontaine. Introduction aux variétés différentielles , 2020 .
[54] S. Chern,et al. Differential Geometry: Cartan's Generalization of Klein's Erlangen Program , 2000 .
[55] K. Paranjape. Geometry VI , 1996 .
[56] Pierre Cartier,et al. The algebraic theory of spinors and Clifford algebras , 1996 .
[57] John F. Hughes,et al. Modeling surfaces of arbitrary topology using manifolds , 1995, SIGGRAPH.
[58] I. G. MacDonald,et al. Lectures on Lie groups and Lie algebras , 1995 .
[59] G. Folland. A course in abstract harmonic analysis , 1995 .
[60] J. Jost. Riemannian geometry and geometric analysis , 1995 .
[61] R. Bryant. An introduction to Lie groups and symplectic geometry , 1995 .
[62] J. Marsden,et al. Introduction to mechanics and symmetry , 1994 .
[63] S. Yau,et al. Lectures on Differential Geometry , 1994 .
[64] E. Folke Bolinder,et al. Clifford Numbers and Spinors , 1993 .
[65] Bernard Gostiaux,et al. Géométrie différentielle : variétés, courbes et surfaces , 1992 .
[66] Joe Harris,et al. Representation Theory: A First Course , 1991 .
[67] W. Massey. A basic course in algebraic topology , 1991 .
[68] N. Bourbaki,et al. Lie Groups and Lie Algebras: Chapters 1-3 , 1989 .
[69] V. Varadarajan,et al. An Introduction to Harmonic Analysis on Semisimple Lie Groups , 1989 .
[70] N. Jacobson,et al. Basic Algebra II , 1989 .
[71] A. Laub,et al. Condition Estimates for Matrix Functions , 1989 .
[72] A. W. Knapp. Lie groups beyond an introduction , 1988 .
[73] Jean-Pierre Serre,et al. Complex Semisimple Lie Algebras , 1987 .
[74] D. Sattinger,et al. Lie Groups and Algebras with Applications to Physics, Geometry and Mechanics , 1986 .
[75] F. Testard,et al. Introduction a la théorie des groupes de Lie classiques , 1986 .
[76] B. Dubrovin,et al. Modern geometry--methods and applications , 1984 .
[77] R. Howe. Very Basic Lie Theory , 1983 .
[78] B. O'neill. Semi-Riemannian Geometry With Applications to Relativity , 1983 .
[79] Mitsuru Nishikawa. On the exponential map of the group O(p,q)0 , 1983 .
[80] Loring W. Tu,et al. Differential forms in algebraic topology , 1982, Graduate texts in mathematics.
[81] John R. Harper,et al. Algebraic topology : a first course , 1982 .
[82] M. Bertin,et al. Algèbre linéaire et géométrie classique , 1981 .
[83] D. Djoković. On the exponential map in classical lie groups , 1980 .
[84] Raymond O. Wells,et al. Differential analysis on complex manifolds , 1980 .
[85] S. Chern. Complex manifolds without potential theory , 1979 .
[86] A. Mukherjea,et al. Real and Functional Analysis , 1978 .
[87] S. Helgason. Differential Geometry, Lie Groups, and Symmetric Spaces , 1978 .
[88] Joe W. Harris,et al. Principles of Algebraic Geometry , 1978 .
[89] William S. Massey,et al. Algebraic Topology: An Introduction , 1977 .
[90] R. Cushman,et al. Conjugacy classes in linear groups , 1977 .
[91] J. Milnor. Curvatures of left invariant metrics on lie groups , 1976 .
[92] W. Boothby. An introduction to differentiable manifolds and Riemannian geometry , 1975 .
[93] C. R. DePrima,et al. The range of A−1A∗ in GL(n,C) , 1974 .
[94] Spinor representations of the orthogonal groups , 1973 .
[95] J. Humphreys. Introduction to Lie Algebras and Representation Theory , 1973 .
[96] C. H. Edwards. Advanced calculus of several variables , 1973 .
[97] E. Stein,et al. Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .
[98] F. W. Warner. Foundations of Differentiable Manifolds and Lie Groups , 1971 .
[99] R. Carter. Lie Groups , 1970, Nature.
[100] J. Milnor. On isometries of inner product spaces , 1969 .
[101] H. Samelson. Notes on Lie algebras , 1969 .
[102] Michael Francis Atiyah,et al. Introduction to commutative algebra , 1969 .
[103] N. Vilenkin. Special Functions and the Theory of Group Representations , 1968 .
[104] H. O. Foulkes. Abstract Algebra , 1967, Nature.
[105] B. Kolman,et al. An introduction to lie groups and lie algebras , 1968 .
[106] J. Milnor. Topology from the differentiable viewpoint , 1965 .
[107] H. Cartan,et al. Théorie élémentaire des fonctions analytiques d'une ou plusieurs variables complexes , 1961 .
[108] Shin-ichi Matsushita. Topological Groups , 1952 .
[109] James E. pLebensohn. Geometry and the Imagination , 1952 .
[110] H. Piaggio. Differential Geometry of Curves and Surfaces , 1952, Nature.
[111] N. Steenrod. Topology of Fibre Bundles , 1951 .
[112] H. T. H. PIAGGIO,et al. Foundations of Algebraic Geometry , 1948, Nature.
[113] A. G. Walker. Theory of Lie Groups , 1947, Nature.
[114] H. Weyl. The Classical Groups , 1940 .
[115] I. Holopainen. Riemannian Geometry , 1927, Nature.
[116] P J Fox,et al. THE FOUNDATIONS OF MECHANICS. , 1918, Science.
[117] R. Ho. Algebraic Topology , 2022 .
[118] Christopher J. BISHOPAbstra,et al. Orthogonal Functions , 2022 .