Fast dynamics of odor rate coding in the insect antennal lobe

Insects identify and evaluate behaviorally relevant odorants in complex natural scenes where odor concentrations and mixture composition can change rapidly. In the honeybee, a combinatorial code of activated and inactivated projection neurons (PNs) develops rapidly within tens of milliseconds at the first level of neural integration, the antennal lobe (AL). The phasic-tonic stimulus-response dynamics observed in the neural population code and in the firing rate profiles of single neurons is faithfully captured by two alternative models which rely either on short-term synaptic depression, or on spike frequency adaptation. Both mechanisms work independently and possibly in parallel to lateral inhibition. Short response latencies in local interneurons indicate that local processing within the AL network relies on fast lateral inhibition that can suppress effectively and specifically odor responses in single PNs. Reviewing recent findings obtained in different insect species, we conclude that the insect olfactory system implements a fast and reliable coding scheme optimized for time-varying input within the behaviorally relevant dynamic range.

[1]  Chris Eliasmith,et al.  Population Models of Temporal Differentiation , 2010, Neural Computation.

[2]  M. Giurfa,et al.  Antennal lobe processing increases separability of odor mixture representations in the honeybee. , 2010, Journal of neurophysiology.

[3]  R. Menzel,et al.  Neural correlates of odor learning in the honeybee antennal lobe , 2010, The European journal of neuroscience.

[4]  Maxim Bazhenov,et al.  Frequency Transitions in Odor-Evoked Neural Oscillations , 2009, Neuron.

[5]  Heike S. Demmer,et al.  Intrinsic membrane properties and inhibitory synaptic input of kenyon cells as mechanisms for sparse coding? , 2009, Journal of neurophysiology.

[6]  Nicolas Y. Masse,et al.  Olfactory Information Processing in Drosophila , 2009, Current Biology.

[7]  B. Smith,et al.  Associative Conditioning Tunes Transient Dynamics of Early Olfactory Processing , 2009, The Journal of Neuroscience.

[8]  R. Kanzaki,et al.  Ca2+ imaging of identifiable neurons labeled by electroporation in insect brains , 2009, Neuroreport.

[9]  Farzad Farkhooi,et al.  Sequential sparsing by successive adapting neural populations , 2009, BMC Neuroscience.

[10]  Kei Ito,et al.  Odor-Evoked Neural Oscillations in Drosophila Are Mediated by Widely Branching Interneurons , 2009, The Journal of Neuroscience.

[11]  Ryohei Kanzaki,et al.  Reconstruction of Virtual Neural Circuits in an Insect Brain , 2009, Front. Neurosci..

[12]  Kevin C. Daly,et al.  A 4-dimensional representation of antennal lobe output based on an ensemble of characterized projection neurons , 2009, Journal of Neuroscience Methods.

[13]  Gilles Laurent,et al.  Neural Encoding of Rapidly Fluctuating Odors , 2009, Neuron.

[14]  Jan Benda,et al.  The Origin of Adaptation in the Auditory Pathway of Locusts Is Specific to Cell Type and Function , 2009, The Journal of Neuroscience.

[15]  M. Nawrot,et al.  Serial correlation in neural spike trains: experimental evidence, stochastic modeling, and single neuron variability. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  B. Smith,et al.  A honeybee's ability to learn, recognize, and discriminate odors depends upon odor sampling time and concentration. , 2009, Behavioral neuroscience.

[17]  Steven A Prescott,et al.  Spike-Rate Coding and Spike-Time Coding Are Affected Oppositely by Different Adaptation Mechanisms , 2008, The Journal of Neuroscience.

[18]  B. Raman,et al.  Sparse odor representation and olfactory learning , 2008, Nature Neuroscience.

[19]  Jeffrey A. Riffell,et al.  Physical Processes and Real-Time Chemical Measurement of the Insect Olfactory Environment , 2008, Journal of Chemical Ecology.

[20]  Ryohei Kanzaki,et al.  Reconstructing the Population Activity of Olfactory Output Neurons that Innervate Identifiable Processing Units , 2008, Frontiers in neural circuits.

[21]  Jan Benda,et al.  Spike-frequency adaptation generates intensity invariance in a primary auditory interneuron , 2008, Journal of Computational Neuroscience.

[22]  Tim Gollisch,et al.  Rapid Neural Coding in the Retina with Relative Spike Latencies , 2008, Science.

[23]  Kingsley J. A. Cox,et al.  Hebbian Crosstalk Prevents Nonlinear Unsupervised Learning , 2008, Front. Comput. Neurosci..

[24]  Johannes Schemmel,et al.  Spike-Frequency Adapting Neural Ensembles: Beyond Mean Adaptation and Renewal Theories , 2007, Neural Computation.

[25]  Shawn R. Olsen,et al.  Sensory processing in the Drosophila antennal lobe increases reliability and separability of ensemble odor representations , 2007, Nature Neuroscience.

[26]  G. Laurent,et al.  Adaptive regulation of sparseness by feedforward inhibition , 2007, Nature Neuroscience.

[27]  Allan M. Wong,et al.  Propagation of olfactory information in Drosophila , 2007, Proceedings of the National Academy of Sciences.

[28]  Shawn R. Olsen,et al.  Excitatory Interactions between Olfactory Processing Channels in the Drosophila Antennal Lobe , 2007, Neuron.

[29]  Rachel I. Wilson,et al.  Olfactory processing and behavior downstream from highly selective receptor neurons , 2007, Nature Neuroscience.

[30]  Vikas Bhandawat,et al.  Excitatory Interactions between Olfactory Processing Channels in the Drosophila Antennal Lobe , 2007, Neuron.

[31]  Eric D Young,et al.  First-spike latency information in single neurons increases when referenced to population onset , 2007, Proceedings of the National Academy of Sciences.

[32]  Lawrence C Katz,et al.  Sparse and Selective Odor Coding by Mitral/Tufted Neurons in the Main Olfactory Bulb , 2007, The Journal of Neuroscience.

[33]  Gilles Laurent,et al.  A Simple Connectivity Scheme for Sparse Coding in an Olfactory System , 2007, The Journal of Neuroscience.

[34]  G. Miesenböck,et al.  Excitatory Local Circuits and Their Implications for Olfactory Processing in the Fly Antennal Lobe , 2007, Cell.

[35]  Sebastian Kirschner,et al.  Dual olfactory pathway in the honeybee, Apis mellifera , 2006, The Journal of comparative neurology.

[36]  Alan Gelperin,et al.  Sparse Odor Coding in Awake Behaving Mice , 2006, The Journal of Neuroscience.

[37]  V. Jayaraman,et al.  Encoding and Decoding of Overlapping Odor Sequences , 2006, Neuron.

[38]  Nancy Kopell,et al.  Oscillations and slow patterning in the antennal lobe , 2006, Journal of Computational Neuroscience.

[39]  Rainer W Friedrich,et al.  Temporal Dynamics and Latency Patterns of Receptor Neuron Input to the Olfactory Bulb , 2006, The Journal of Neuroscience.

[40]  M. Stopfer Olfactory Coding: Inhibition Reshapes Odor Responses , 2005, Current Biology.

[41]  G. Laurent,et al.  Transient Dynamics versus Fixed Points in Odor Representations by Locust Antennal Lobe Projection Neurons , 2005, Neuron.

[42]  M. Thomson,et al.  Odour concentration affects odour identity in honeybees , 2005, Proceedings of the Royal Society B: Biological Sciences.

[43]  M. Stopfer,et al.  Encoding a temporally structured stimulus with a temporally structured neural representation , 2005, Nature Neuroscience.

[44]  R. Menzel,et al.  Sparsening and temporal sharpening of olfactory representations in the honeybee mushroom bodies. , 2005, Journal of neurophysiology.

[45]  G. Laurent,et al.  Role of GABAergic Inhibition in Shaping Odor-Evoked Spatiotemporal Patterns in the Drosophila Antennal Lobe , 2005, The Journal of Neuroscience.

[46]  Rainer W Friedrich,et al.  Processing of Odor Mixtures in the Zebrafish Olfactory Bulb , 2004, The Journal of Neuroscience.

[47]  B. Smith,et al.  Molecular features of odorants systematically influence slow temporal responses across clusters of coordinated antennal lobe units in the moth Manduca sexta. , 2004, Journal of neurophysiology.

[48]  Gilles Laurent,et al.  Dynamics of olfactory bulb input and output activity during odor stimulation in zebrafish. , 2004, Journal of neurophysiology.

[49]  C. Giovanni Galizia,et al.  Odor-Driven Attractor Dynamics in the Antennal Lobe Allow for Simple and Rapid Olfactory Pattern Classification , 2004, Neural Computation.

[50]  C. Galizia,et al.  Representation of primary plant odorants in the antennal lobe of the moth Heliothis virescens using calcium imaging. , 2004, Chemical senses.

[51]  Gilles Laurent,et al.  Transformation of Olfactory Representations in the Drosophila Antennal Lobe , 2004, Science.

[52]  Andreas V. M. Herz,et al.  A Universal Model for Spike-Frequency Adaptation , 2003, Neural Computation.

[53]  V. Jayaraman,et al.  Intensity versus Identity Coding in an Olfactory System , 2003, Neuron.

[54]  A. Wong,et al.  Two-Photon Calcium Imaging Reveals an Odor-Evoked Map of Activity in the Fly Brain , 2003, Cell.

[55]  Glenn C. Turner,et al.  Oscillations and Sparsening of Odor Representations in the Mushroom Body , 2002, Science.

[56]  J. Hildebrand,et al.  Developmental changes in the electrophysiological properties and response characteristics of Manduca antennal-lobe neurons. , 2002, Journal of neurophysiology.

[57]  R. Menzel,et al.  Differential parallel processing of olfactory information in the honeybee, Apis mellifera L. , 2002, Journal of Comparative Physiology A.

[58]  S. Sachse,et al.  Role of inhibition for temporal and spatial odor representation in olfactory output neurons: a calcium imaging study. , 2002, Journal of neurophysiology.

[59]  R. Menzel,et al.  Structure and response patterns of olfactory interneurons in the honeybee, Apis mellifera , 2001, The Journal of comparative neurology.

[60]  G. Laurent,et al.  Dynamic optimization of odor representations by slow temporal patterning of mitral cell activity. , 2001, Science.

[61]  Randolf Menzel,et al.  Odour perception in honeybees: coding information in glomerular patterns , 2000, Current Opinion in Neurobiology.

[62]  Richard Axel,et al.  An Olfactory Sensory Map in the Fly Brain , 2000, Cell.

[63]  R. Menzel,et al.  Optical Imaging of Odor-Evoked Glomerular Activity Patterns in the Antennal Lobes of the Ant Camponotus rufipes , 1999, Naturwissenschaften.

[64]  Peter J. Clyne,et al.  Odor Coding in a Model Olfactory Organ: TheDrosophila Maxillary Palp , 1999, The Journal of Neuroscience.

[65]  S. Chandra,et al.  An analysis of synthetic processing of odor mixtures in the honeybee (Apis mellifera). , 1998, The Journal of experimental biology.

[66]  Henry Markram,et al.  Neural Networks with Dynamic Synapses , 1998, Neural Computation.

[67]  G. Laurent,et al.  Impaired odour discrimination on desynchronization of odour-encoding neural assemblies , 1997, Nature.

[68]  R. Menzel,et al.  Representations of odours and odour mixtures visualized in the honeybee brain , 1997, Nature.

[69]  R. Menzel,et al.  Odorant intensity as a determinant for olfactory conditioning in honeybees: roles in discrimination, overshadowing and memory consolidation. , 1997, The Journal of experimental biology.

[70]  H. Markram,et al.  The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[71]  G. Laurent,et al.  GABAergic synapses in the antennal lobe and mushroom body of the locust olfactory system , 1996, The Journal of comparative neurology.

[72]  X. Sun,et al.  Odour quality processing by bee antennal lobe interneurones , 1993 .

[73]  X. Sun,et al.  Morphology and spatial distribution of bee antennal lobe interneurones responsive to odours , 1993 .

[74]  Johannes Esslen,et al.  Zahl und Verteilung antennaler Sensillen bei der Honigbiene (Apis mellifera L.) , 1976, Zoomorphologie.

[75]  Martin P. Nawrot,et al.  Analysis and Interpretation of Interval and Count Variability in Neural Spike Trains , 2010 .

[76]  Hokto Kazama,et al.  Homeostatic Matching and Nonlinear Amplification at Identified Central Synapses , 2008, Neuron.

[77]  B. Kimmerle,et al.  Physiological and morphological characterization of honeybee olfactory neurons combining electrophysiology, calcium imaging and confocal microscopy , 2003, Journal of Comparative Physiology A.

[78]  R. Menzel,et al.  Associative learning modifies neural representations of odors in the insect brain , 1999, Nature Neuroscience.

[79]  S. Eichmüller,et al.  Structural plasticity of an immunochemically identified set of honeybee olfactory interneurones. , 1993, Acta biologica Hungarica.

[80]  R. Menzel,et al.  Frontiers in Systems Neuroscience Systems Neuroscience , 2022 .

[81]  A. Destexhe,et al.  Markov Process Models for Neural Ensembles with Spike-Frequency Adaptation , 2022 .