Some Methods for the Global Analysis of Closed Invariant Curves in Two-Dimensional Maps

It is well known that models of nonlinear oscillators applied to the study of the business cycle can be formulated both as continuos or discrete time dynamic models (see e.g. [23], [33], [34]). However, economic time is often discontinuous (discrete) because decisions in economics cannot be continuously revised. For this reason discrete-time dynamical systems, represented by difference equations or, more properly, by the iterated application of maps, are often a more suitable tool for modelling dynamic economic processes. So, it is useful to study the peculiarities of discrete dynamical systems and their possible applications to the study of self sustained oscillations. This is the main goal of this Chapter, where we describe, on the light of some recent results about local and global properties of iterated maps of the plane, some particular routes to the creation/destruction of closed invariant curves, along which self sustained oscillations occur.

[1]  Yoshisuke Ueda,et al.  The chaos avant-garde : memories of the early days of chaos theory , 2001 .

[2]  Laura Gardini,et al.  Analysis of global bifurcations in a market share attraction model , 2000 .

[3]  Gian Italo Bischi,et al.  Equilibrium selection in a nonlinear duopoly game with adaptive expectations , 2001 .

[4]  Laura Gardini,et al.  Global bifurcations of Closed Invariant Curves in Two-Dimensional Maps: a Computer Assisted Study , 2005, Int. J. Bifurc. Chaos.

[5]  Christian Mira,et al.  Recurrences and Discrete Dynamic Systems , 1980 .

[6]  M. R. Herman Sur la Conjugaison Différentiable des Difféomorphismes du Cercle a des Rotations , 1979 .

[7]  Stephen Wiggins Global Bifurcations and Chaos: Analytical Methods , 1988 .

[8]  H. G. Bothe Gumowski, I./Mira, C., Dynamique chaotique. Transformations ponctuelles, Transition Ordre‐Désordre. Toulouse, Cepadues Editions 1980. 480 S , 1981 .

[9]  Floris Takens,et al.  Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations : fractal dimensions and infinitely many attractors , 1993 .

[10]  R. M. Goodwin,et al.  Teoria Nonlineare del Ciclo Economico. , 1980 .

[11]  M. Bernhard Introduction to Chaotic Dynamical Systems , 1992 .

[12]  William A. Brock,et al.  A rational route to randomness , 1997 .

[13]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[14]  Christoph Kind,et al.  Remarks on the economic interpretation of Hopf bifurcations , 1999 .

[15]  R. Devaney An Introduction to Chaotic Dynamical Systems , 1990 .

[16]  Enrico Saltari,et al.  Multiple attractors and global bifurcations in a Kaldor-type business cycle model , 2001 .

[17]  Patrick A. Pintus,et al.  Business–Cycle Models and the Dangers of Linearizing , 2006 .

[18]  Laura Gardini,et al.  Homoclinic bifurcations in n -dimensional endomorphisms, due to expanding periodic points , 1994 .

[19]  Laura Gardini,et al.  Some global bifurcations related to the appearance of closed invariant curves , 2005, Math. Comput. Simul..

[20]  M. A. Safonova,et al.  On the destruction of three-dimensional tori , 1996 .

[21]  Stephen Wiggins,et al.  Global Bifurcations and Chaos , 1988 .

[22]  Hans-Walter Lorenz,et al.  Business Cycle Theory , 1987 .

[23]  P. J. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[24]  Laura Gardini,et al.  Some Methods for the Global Analysis of Dynamic Games Represented by Iterated Noninvertible Maps , 2002 .

[25]  J. A. Kuznecov Elements of applied bifurcation theory , 1998 .

[26]  C. Mira,et al.  Chaotic Dynamics: From the One-Dimensional Endomorphism to the Two-Dimensional Diffeomorphism , 1987 .

[27]  Hao Bai-lin Elementary Symbolic Dynamics , 1988 .

[28]  L. P. Šil'nikov,et al.  ON THREE-DIMENSIONAL DYNAMICAL SYSTEMS CLOSE TO SYSTEMS WITH A STRUCTURALLY UNSTABLE HOMOCLINIC CURVE. II , 1972 .

[29]  Florian Wagener,et al.  Bifurcation Routes to Volatility Clustering under Evolutionary Learning , 2008 .

[30]  Laura Gardini,et al.  Homoclinic tangles in a Kaldor-like business cycle model , 2007 .

[31]  V. V. Fedorenko,et al.  Dynamics of One-Dimensional Maps , 1997 .

[32]  Tönu Puu,et al.  Attractors, Bifurcations, and Chaos , 2000 .

[33]  George D. Birkhoff,et al.  Structure Analysis of Surface Transformations , 2022 .

[34]  J. Guckenheimer ONE‐DIMENSIONAL DYNAMICS * , 1980 .

[35]  Robin de Vilder,et al.  On the transition from local regular to global irregular fluctuations , 2000 .

[36]  Anna Agliari Homoclinic connections and subcritical Neimark bifurcation in a duopoly model with adaptively adjusted productions , 2006 .

[37]  Christian Mira,et al.  On Some Properties of Invariant Sets of Two-Dimensional Noninvertible Maps , 1997 .

[38]  Alfredo Medio,et al.  NONLINEAR DYNAMICS AND CHAOS PART I: A GEOMETRICAL APPROACH , 1998, Macroeconomic Dynamics.

[39]  G. Iooss,et al.  Elementary stability and bifurcation theory , 1980 .

[40]  Christian Mira,et al.  Chaotic Dynamics in Two-Dimensional Noninvertible Maps , 1996 .

[41]  Laura Gardini,et al.  Homoclinic tangles associated with closed invariant curves in families of 2-D maps , 2006 .

[42]  Laura Gardini,et al.  Global bifurcations in duopoly when the Cournot Point is Destabilized via a Subcritical Neimark bifurcation , 2006, IGTR.

[43]  G. Iooss Bifurcation of maps and applications , 1979 .

[44]  Hans Thunberg,et al.  Periodicity versus Chaos in One-Dimensional Dynamics , 2001, SIAM Rev..