Family of Bell-like Inequalities as Device-Independent Witnesses for Entanglement Depth.

We present a simple family of Bell inequalities applicable to a scenario involving arbitrarily many parties, each of which performs two binary-outcome measurements. We show that these inequalities are members of the complete set of full-correlation Bell inequalities discovered by Werner-Wolf-Żukowski-Brukner. For scenarios involving a small number of parties, we further verify that these inequalities are facet defining for the convex set of Bell-local correlations. Moreover, we show that the amount of quantum violation of these inequalities naturally manifests the extent to which the underlying system is genuinely many-body entangled. In other words, our Bell inequalities, when supplemented with the appropriate quantum bounds, naturally serve as device-independent witnesses for entanglement depth, allowing one to certify genuine k-partite entanglement in an arbitrary n≥k-partite scenario without relying on any assumption about the measurements being performed, or the dimension of the underlying physical system. A brief comparison is made between our witnesses and those based on some other Bell inequalities, as well as quantum Fisher information. A family of witnesses for genuine k-partite nonlocality applicable to an arbitrary n≥k-partite scenario based on our Bell inequalities is also presented.

[1]  N. Gisin,et al.  Quantifying multipartite nonlocality via the size of the resource , 2014, 1411.4656.

[2]  G. Tóth,et al.  Evaluating convex roof entanglement measures. , 2014, Physical Review Letters.

[3]  Hierarchies of multipartite entanglement for continuous variable states , 2014, 1409.5347.

[4]  Miguel Navascues,et al.  Device-independent tomography of multipartite quantum states , 2014, 1407.5911.

[5]  Jan-AAke Larsson,et al.  Loopholes in Bell inequality tests of local realism , 2014, 1407.0363.

[6]  Miguel Navascués,et al.  Robust and versatile black-box certification of quantum devices. , 2014, Physical review letters.

[7]  M. Lewenstein,et al.  Detecting nonlocality in many-body quantum states , 2014, Science.

[8]  Anonymous quantum nonlocality. , 2014, Physical review letters.

[9]  Nicolas Gisin,et al.  Classifying 50 years of Bell inequalities , 2014, 1404.1306.

[10]  Géza Tóth,et al.  Detecting multiparticle entanglement of Dicke states. , 2014, Physical review letters.

[11]  Florian J. Curchod,et al.  Multipartite nonlocality as a resource and quantum correlations having indefinite causal order , 2013, 1310.7598.

[12]  C. H. Oh,et al.  Test of genuine multipartite nonlocality without inequalities. , 2013, Physical review letters.

[13]  Umesh Vazirani,et al.  Fully device-independent quantum key distribution. , 2012, 1210.1810.

[14]  Gonzalo de la Torre,et al.  Characterization of quantum correlations with local dimension constraints and its device-independent applications , 2013, 1308.3410.

[15]  Marcus Huber,et al.  Entropy vector formalism and the structure of multidimensional entanglement in multipartite systems , 2013, 1307.3541.

[16]  M. Lewenstein,et al.  Detecting non-locality in multipartite quantum systems with two-body correlation functions , 2013, 1306.6860.

[17]  Aaron J. Miller,et al.  Detection-loophole-free test of quantum nonlocality, and applications. , 2013, Physical review letters.

[18]  Umesh V. Vazirani,et al.  Classical command of quantum systems , 2013, Nature.

[19]  M. Żukowski,et al.  Compact Bell inequalities for multipartite experiments , 2013, 1302.6698.

[20]  Jean-Daniel Bancal,et al.  Device-independent entanglement quantification and related applications. , 2013, Physical review letters.

[21]  A. Zeilinger,et al.  Bell violation using entangled photons without the fair-sampling assumption , 2012, Nature.

[22]  Miguel Navascues,et al.  Robust Self Testing of Unknown Quantum Systems into Any Entangled Two-Qubit States , 2013 .

[23]  Florian Mintert,et al.  Hierarchies of multipartite entanglement. , 2013, Physical review letters.

[24]  Stefano Pironio,et al.  Definitions of multipartite nonlocality , 2011, 1112.2626.

[25]  C. H. Oh,et al.  All entangled pure states violate a single Bell's inequality. , 2012, Physical review letters.

[26]  N. Gisin,et al.  Bell inequalities for three systems and arbitrarily many measurement outcomes , 2012, 1204.3829.

[27]  T. H. Yang,et al.  Robust self-testing of the singlet , 2012, 1203.2976.

[28]  Nicolas Gisin,et al.  Imperfect measurement settings: Implications for quantum state tomography and entanglement witnesses , 2012, 1203.0911.

[29]  N. Gisin,et al.  A framework for the study of symmetric full-correlation Bell-like inequalities , 2012, 1201.2055.

[30]  Miguel Navascués,et al.  Operational framework for nonlocality. , 2011, Physical review letters.

[31]  G. Tóth,et al.  Multipartite entanglement and high precision metrology , 2010, 1006.4368.

[32]  Augusto Smerzi,et al.  Fisher information and multiparticle entanglement , 2010, 1006.4366.

[33]  W. Marsden I and J , 2012 .

[34]  Travis Norsen,et al.  Bell's theorem , 2011, Scholarpedia.

[35]  T. Vértesi,et al.  Multisetting Bell-type inequalities for detecting genuine multipartite entanglement , 2011, 1102.4320.

[36]  Stefano Pironio,et al.  Device-independent witnesses of genuine multipartite entanglement. , 2011, Physical review letters.

[37]  Joel J. Wallman,et al.  Generating nonclassical correlations without fully aligning measurements , 2010, 1012.1737.

[38]  Nicolas Brunner,et al.  Semi-device-independent bounds on entanglement , 2010, 1012.1513.

[39]  Adrian Kent,et al.  Private randomness expansion with untrusted devices , 2010, 1011.4474.

[40]  Roger Colbeck,et al.  No extension of quantum theory can have improved predictive power , 2010, Nature communications.

[41]  Dobák Judit,et al.  PhD dissertation , 2011 .

[42]  Stefano Pironio,et al.  Random numbers certified by Bell’s theorem , 2009, Nature.

[43]  T. Rudolph,et al.  Nonclassical correlations from randomly chosen local measurements. , 2009, Physical review letters.

[44]  Stefano Pironio,et al.  Convergent Relaxations of Polynomial Optimization Problems with Noncommuting Variables , 2009, SIAM J. Optim..

[45]  Marek Zukowski,et al.  Clauser-Horne-Shimony-Holt-type Bell inequalities involving a party with two or three local binary settings , 2009 .

[46]  V. Scarani,et al.  Testing the dimension of Hilbert spaces. , 2008, Physical review letters.

[47]  A. Acín,et al.  A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations , 2008, 0803.4290.

[48]  J. Uffink,et al.  Partial separability and entanglement criteria for multiqubit quantum states , 2007, 0710.5326.

[49]  V. Scarani,et al.  Device-independent security of quantum cryptography against collective attacks. , 2007, Physical review letters.

[50]  Yeong-Cherng Liang,et al.  Bounds on quantum correlations in Bell-inequality experiments , 2006, quant-ph/0608128.

[51]  A. Acín,et al.  Bounding the set of quantum correlations. , 2006, Physical review letters.

[52]  Stefano Pironio,et al.  Maximally Non-Local and Monogamous Quantum Correlations , 2006, Physical review letters.

[53]  Christoph Simon,et al.  Multipartite entanglement inequalities via spin vector geometry. , 2005, Physical review letters.

[54]  G. Tóth,et al.  Multipartite entanglement in spin chains , 2005, quant-ph/0502160.

[55]  G. Tóth,et al.  Detecting genuine multipartite entanglement with two local measurements. , 2004, Physical review letters.

[56]  Adrian Kent,et al.  No signaling and quantum key distribution. , 2004, Physical review letters.

[57]  S. Massar,et al.  Nonlocal correlations as an information-theoretic resource , 2004, quant-ph/0404097.

[58]  J. Bell,et al.  Speakable and Unspeakable in Quantum Mechanics: Preface to the first edition , 2004 .

[59]  M. Żukowski,et al.  Bell's inequalities and quantum communication complexity. , 2004, Physical review letters.

[60]  Andrew Chi-Chih Yao,et al.  Self testing quantum apparatus , 2004, Quantum Inf. Comput..

[61]  J. Eisert,et al.  Multiparty entanglement in graph states , 2003, quant-ph/0307130.

[62]  C. Śliwa Symmetries of the Bell correlation inequalities , 2003, quant-ph/0305190.

[63]  Jian-Wei Pan,et al.  Classifying N-qubit entanglement via Bell's inequalities. , 2002, Physical review letters.

[64]  M. Koashi,et al.  Configuration of separability and tests for multipartite entanglement in bell-type experiments. , 2002, Physical review letters.

[65]  J. Uffink Quadratic bell inequalities as tests for multipartite entanglement. , 2002, Physical review letters.

[66]  V. Scarani,et al.  Bell-type inequalities to detect true n-body nonseparability. , 2002, Physical review letters.

[67]  F. Verstraete,et al.  Entanglement versus bell violations and their behavior under local filtering operations. , 2001, Physical review letters.

[68]  S. Massar,et al.  Bell inequalities for arbitrarily high-dimensional systems. , 2001, Physical review letters.

[69]  M. Żukowski,et al.  Bell's theorem for general N-qubit states. , 2001, Physical review letters.

[70]  J. Uffink,et al.  Sufficient conditions for three-particle entanglement and their tests in recent experiments , 2001, quant-ph/0107072.

[71]  M. Wolf,et al.  All-multipartite Bell-correlation inequalities for two dichotomic observables per site , 2001, quant-ph/0102024.

[72]  Klaus Mølmer,et al.  Entanglement and extreme spin squeezing. , 2000, Physical review letters.

[73]  Jan-Åke Larsson,et al.  Strict detector-efficiency bounds for n-site Clauser-Horne inequalities , 2000, quant-ph/0006022.

[74]  H. Briegel,et al.  Persistent entanglement in arrays of interacting particles. , 2000, Physical review letters.

[75]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[76]  M. Wolf,et al.  Bell’s inequalities for states with positive partial transpose , 1999, quant-ph/9910063.

[77]  R. Cleve,et al.  Quantum Entanglement and Communication Complexity , 1997, SIAM J. Comput..

[78]  H. Bechmann-Pasquinucci,et al.  Bell inequality, Bell states and maximally entangled states for n qubits , 1998, quant-ph/9804045.

[79]  Pérès,et al.  Separability Criterion for Density Matrices. , 1996, Physical review letters.

[80]  S. Popescu,et al.  Quantum nonlocality as an axiom , 1994 .

[81]  A. V. Belinskii,et al.  Interference of light and Bell's theorem , 1993 .

[82]  Ardehali Bell inequalities with a magnitude of violation that grows exponentially with the number of particles. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[83]  S. Popescu,et al.  Generic quantum nonlocality , 1992 .

[84]  Avshalom C. Elitzur,et al.  Quantum nonlocality for each pair in an ensemble , 1992 .

[85]  N. Gisin,et al.  Maximal violation of Bell's inequality for arbitrarily large spin , 1992 .

[86]  Roy,et al.  Tests of signal locality and Einstein-Bell locality for multiparticle systems. , 1991, Physical review letters.

[87]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[88]  Mermin Nd Simple unified form for the major no-hidden-variables theorems. , 1990 .

[89]  Kiel T. Williams,et al.  Extreme quantum entanglement in a superposition of macroscopically distinct states. , 1990, Physical review letters.

[90]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[91]  A. Zeilinger,et al.  Speakable and Unspeakable in Quantum Mechanics , 1989 .

[92]  S. Braunstein,et al.  Wringing out better Bell inequalities , 1989 .

[93]  M. Kafatos Bell's theorem, quantum theory and conceptions of the universe , 1989 .

[94]  R. Lathe Phd by thesis , 1988, Nature.

[95]  Svetlichny,et al.  Distinguishing three-body from two-body nonseparability by a Bell-type inequality. , 1987, Physical review. D, Particles and fields.

[96]  P. Pearle Hidden-Variable Example Based upon Data Rejection , 1970 .

[97]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[98]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .