Electron-polaron dichotomy of charge carriers in perovskite oxides

[1]  Vincent Garcia,et al.  Giant topological Hall effect in correlated oxide thin films , 2018, Nature Physics.

[2]  J. Íñiguez,et al.  Structurally triggered metal-insulator transition in rare-earth nickelates , 2017, Nature Communications.

[3]  V. Strocov,et al.  Dimensionality-Driven Metal-Insulator Transition in Spin-Orbit-Coupled SrIrO_{3}. , 2017, Physical review letters.

[4]  F. Giustino,et al.  Origin of the crossover from polarons to Fermi liquids in transition metal oxides , 2017, Nature Communications.

[5]  Hua Zhou,et al.  Strongly correlated perovskite fuel cells , 2016, Nature.

[6]  James M. Rondinelli,et al.  Ultrafast Band Engineering and Transient Spin Currents in Antiferromagnetic Oxides , 2016, Scientific Reports.

[7]  N. Nagaosa,et al.  Coulomb and electron-phonon interactions in metals , 2016, 1603.06409.

[8]  Xingyu Gao,et al.  Suppression of Structural Phase Transition in VO2 by Epitaxial Strain in Vicinity of Metal-insulator Transition , 2016, Scientific Reports.

[9]  V. Gopalan,et al.  Correlated metals as transparent conductors. , 2016, Nature materials.

[10]  Tomonori Nishimura,et al.  Positive-bias gate-controlled metal–insulator transition in ultrathin VO2 channels with TiO2 gate dielectrics , 2015, Nature Communications.

[11]  S. Mishra,et al.  Spin-phonon coupling and high-pressure phase transitions of RMnO3 (R=Ca and Pr): An inelastic neutron scattering and first-principles study , 2015, 1510.06210.

[12]  A. Filippetti,et al.  Polaronic metal state at the LaAlO3/SrTiO3 interface , 2015, Nature Communications.

[13]  Z. Ristić,et al.  Tailoring the nature and strength of electron-phonon interactions in the SrTiO3(001) 2D electron liquid. , 2015, Nature materials.

[14]  P. Blaha,et al.  Fermi Surface of Three-Dimensional La(1-x)Sr(x)MnO3 Explored by Soft-X-Ray ARPES: Rhombohedral Lattice Distortion and its Effect on Magnetoresistance. , 2015, Physical review letters.

[15]  D. Nuzhnyy,et al.  The manifestation of spin-phonon coupling in CaMnO3 , 2015 .

[16]  A. de Candia,et al.  Mobility of Holstein polaron at finite temperature: an unbiased approach. , 2015, Physical review letters.

[17]  Vincent Garcia,et al.  Depth profiling charge accumulation from a ferroelectric into a doped Mott insulator. , 2015, Nano letters.

[18]  D. Meyers,et al.  Engineered Mott ground state in a LaTiO3+δ/LaNiO3 heterostructure , 2015, Nature Communications.

[19]  S. C. Parker,et al.  Structural, electronic and thermoelectric behaviour of CaMnO3 and CaMnO(3−δ) , 2014 .

[20]  Y. Tokura,et al.  Magneto-tunable photocurrent in manganite-based heterojunctions , 2014, Nature Communications.

[21]  J. Nichols,et al.  Compressive strain-induced metal–insulator transition in orthorhombic SrIrO_3 thin films , 2014, 1406.6640.

[22]  N. Nagaosa,et al.  Diagrammatic Monte Carlo method for many-polaron problems. , 2014, Physical review letters.

[23]  G. Schmidt,et al.  Polaron framework to account for transport properties in metallic epitaxial manganite films , 2014 .

[24]  D. Schlom,et al.  Atomic-scale control of competing electronic phases in ultrathin LaNiO₃. , 2014, Nature nanotechnology.

[25]  K. Held,et al.  Electronics with Correlated Oxides: SrVO(3)/SrTiO(3) as a Mott Transistor. , 2013, Physical review letters.

[26]  Stuart S. P. Parkin,et al.  Control of the metal–insulator transition in vanadium dioxide by modifying orbital occupancy , 2013, Nature Physics.

[27]  E. Tsymbal,et al.  Enhanced tunnelling electroresistance effect due to a ferroelectrically induced phase transition at a magnetic complex oxide interface. , 2013, Nature materials.

[28]  P. Blaha,et al.  Three-dimensional electron realm in VSe2 by soft-x-ray photoelectron spectroscopy: origin of charge-density waves. , 2012, Physical review letters.

[29]  Q. Jia,et al.  Epitaxial growth and metal-insulator transition of vanadium oxide thin films with controllable phases , 2012 .

[30]  M. Alexe,et al.  Reversible electrical switching of spin polarization in multiferroic tunnel junctions. , 2012, Nature materials.

[31]  E. Magnano,et al.  Surface symmetry-breaking and strain effects on orbital occupancy in transition metal perovskite epitaxial films , 2012, Nature Communications.

[32]  A. Sawa,et al.  Strain‐Mediated Phase Control and Electrolyte‐Gating of Electron‐Doped Manganites , 2011, Advanced materials.

[33]  N. D. Mathur,et al.  Ferroelectric Control of Spin Polarization , 2010, Science.

[34]  V. Garcia,et al.  Giant tunnel electroresistance for non-destructive readout of ferroelectric states , 2009, Nature.

[35]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[36]  S. Parkin,et al.  Handbook of magnetism and advanced magnetic materials , 2007 .

[37]  S. Satpathy,et al.  Self-trapped magnetic polaron in electron-doped CaMnO3 , 2005 .

[38]  Y. Sukhorukov,et al.  Electronic structure and polarons in CaMnO3-δ single crystals: Optical data , 2004 .

[39]  L. Patthey,et al.  k-Dependent electronic structure of the colossal magnetoresistive perovskite La0.66Sr0.34MnO3 , 2004 .

[40]  N. Nagaosa,et al.  Electron-phonon coupling and a polaron in the t-J model: from the weak to the strong coupling regime. , 2004, Physical review letters.

[41]  Peter W. Stephens,et al.  Structural and magnetic phase diagram of the two-electron-doped (Ca1-xCex)MnO3 system: Effects of competition among charge, orbital, and spin ordering , 2004 .

[42]  P. Battle,et al.  Non-adiabatic small polaron hopping in the n = 3 Ruddlesden–Popper compound Ca4Mn3O10 , 2003, cond-mat/0305421.

[43]  V. Strocov Intrinsic accuracy in 3-dimensional photoemission band mapping , 2002, cond-mat/0210404.

[44]  Y. Tokura,et al.  Interface ferromagnetism in oxide superlattices of CaMnO3/CaRuO3 , 2001 .

[45]  A. Schrott,et al.  Room-temperature oxide field-effect transistor with buried channel , 2000 .

[46]  A. Millis Lattice effects in magnetoresistive manganese perovskites , 1998, Nature.

[47]  R. Gonnelli,et al.  Breakdown of Migdal's theorem and intensity of electron-phonon coupling in high-Tc superconductors , 1997, cond-mat/9710189.

[48]  S. Hüfner,et al.  MANY-BODY DEFINITION OF A FERMI SURFACE: APPLICATION TO ANGLE-RESOLVED PHOTOEMISSION , 1997 .

[49]  Pietronero,et al.  Nonadiabatic superconductivity: Electron-phonon interaction beyond Migdal's theorem. , 1995, Physical review letters.

[50]  L. Pietronero,et al.  Nonadiabatic superconductivity: Electron phonon interaction beyond Migdal's Theorem , 1995 .

[51]  W. A. Dench,et al.  Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids , 1979 .

[52]  R. Feynman,et al.  Mobility of Slow Electrons in a Polar Crystal , 1962 .

[53]  Carlo Cavazzoni,et al.  Advanced capabilities for materials modelling with Quantum ESPRESSO. , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[54]  T. Schmitt,et al.  Soft-X-ray ARPES facility at the ADRESS beamline of the SLS: concepts, technical realisation and scientific applications. , 2014, Journal of synchrotron radiation.

[55]  A. Alexandrov Polarons in advanced materials , 2007 .

[56]  J Singleton,et al.  Non-adiabatic small polaron hopping in the n = 3 Ruddlesden–Popper compound Ca4Mn3O10 , 2003 .

[57]  A. Piazzalunga,et al.  Synchrotron Radiation High-resolution Soft X-ray Beamline Adress at the Swiss Light Source for Resonant Inelastic X-ray Scattering and Angle-resolved Photoelectron Spectroscopies , 2022 .