Bi-allelic Loss of CDKN2A Initiates Melanoma Invasion via BRN2 Activation.

[1]  Robert L. Judson,et al.  Genomic and Transcriptomic Analysis Reveals Incremental Disruption of Key Signaling Pathways during Melanoma Evolution. , 2018, Cancer cell.

[2]  Jeffrey E Gershenwald,et al.  Melanoma staging: Evidence‐based changes in the American Joint Committee on Cancer eighth edition cancer staging manual , 2017, CA: a cancer journal for clinicians.

[3]  Jun S. Song,et al.  High accuracy label-free classification of single-cell kinetic states from holographic cytometry of human melanoma cells , 2017, Scientific Reports.

[4]  B. Liu,et al.  Loss of p16INK4A stimulates aberrant mitochondrial biogenesis through a CDK4/Rb-independent pathway , 2017, Oncotarget.

[5]  M. Nepal,et al.  Survival trends among patients with metastatic melanoma in the United States: A population based study. , 2017 .

[6]  N. Haass,et al.  NFIB Mediates BRN2 Driven Melanoma Cell Migration and Invasion Through Regulation of EZH2 and MITF , 2017, EBioMedicine.

[7]  M. Herlyn,et al.  Oncogenic BRAF-Mediated Melanoma Cell Invasion. , 2016, Cell reports.

[8]  Zigang Dong,et al.  Implications of Genetic and Epigenetic Alterations of CDKN2A (p16INK4a) in Cancer , 2016, EBioMedicine.

[9]  Eric Talevich,et al.  CNVkit: Genome-Wide Copy Number Detection and Visualization from Targeted DNA Sequencing , 2016, PLoS Comput. Biol..

[10]  D. Bennett Genetics of melanoma progression: the rise and fall of cell senescence , 2016, Pigment cell & melanoma research.

[11]  R. Dummer,et al.  The Genetic Evolution of Melanoma from Precursor Lesions. , 2015, The New England journal of medicine.

[12]  S. Berger,et al.  CDKN2B Loss Promotes Progression from Benign Melanocytic Nevus to Melanoma. , 2015, Cancer discovery.

[13]  Lei S. Qi,et al.  Small molecules enhance CRISPR genome editing in pluripotent stem cells. , 2015, Cell stem cell.

[14]  N. Bardeesy,et al.  mTORC1 activation blocks BrafV600E-induced growth arrest but is insufficient for melanoma formation. , 2015, Cancer cell.

[15]  B. van Steensel,et al.  Easy quantitative assessment of genome editing by sequence trace decomposition , 2014, Nucleic acids research.

[16]  E. Lander,et al.  Development and Applications of CRISPR-Cas9 for Genome Engineering , 2014, Cell.

[17]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[18]  S. Li,et al.  Human skin neural crest progenitor cells are susceptible to BRAFV600E-induced transformation , 2014, Oncogene.

[19]  B. Bastian The molecular pathology of melanoma: an integrated taxonomy of melanocytic neoplasia. , 2014, Annual review of pathology.

[20]  C. Berking,et al.  POU transcription factors in melanocytes and melanoma. , 2014, European journal of cell biology.

[21]  Luke A. Gilbert,et al.  Dynamic Imaging of Genomic Loci in Living Human Cells by an Optimized CRISPR/Cas System , 2013, Cell.

[22]  David A. Scott,et al.  Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity , 2013, Cell.

[23]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[24]  S. M. Rubin Deciphering the retinoblastoma protein phosphorylation code. , 2013, Trends in biochemical sciences.

[25]  David R. Kelley,et al.  Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks , 2012, Nature Protocols.

[26]  Colin N. Dewey,et al.  RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome , 2011, BMC Bioinformatics.

[27]  K. Hoek,et al.  Cancer stem cells versus phenotype‐switching in melanoma , 2010, Pigment cell & melanoma research.

[28]  Keith W. Vance,et al.  The Retinoblastoma Protein Modulates Tbx2 Functional Specificity , 2010, Molecular biology of the cell.

[29]  Alexander R. Pico,et al.  Alternative splicing regulates mouse embryonic stem cell pluripotency and differentiation , 2010, Proceedings of the National Academy of Sciences.

[30]  Candyce Kroenke,et al.  Analyses and comparisons of telomerase activity and telomere length in human T and B cells: insights for epidemiology of telomere maintenance. , 2010, Journal of immunological methods.

[31]  E. Sahai,et al.  Intravital imaging reveals transient changes in pigment production and Brn2 expression during metastatic melanoma dissemination. , 2009, Cancer research.

[32]  S. Haferkamp,et al.  Oncogene-induced senescence does not require the p16(INK4a) or p14ARF melanoma tumor suppressors. , 2009, The Journal of investigative dermatology.

[33]  J. Reis-Filho,et al.  Oncogenic Braf induces melanocyte senescence and melanoma in mice. , 2009, Cancer cell.

[34]  R. DePinho,et al.  BRafV600E cooperates with Pten silencing to elicit metastatic melanoma , 2009, Nature Genetics.

[35]  R. Sturm,et al.  POU domain transcription factors: BRN2 as a regulator of melanocytic growth and tumourigenesis , 2008, Pigment cell & melanoma research.

[36]  Sander van den Heuvel,et al.  Conserved functions of the pRB and E2F families , 2008, Nature Reviews Molecular Cell Biology.

[37]  Z. Werb,et al.  Lentiviral transduction of mammary stem cells for analysis of gene function during development and cancer. , 2008, Cell stem cell.

[38]  S. Puig,et al.  High-risk melanoma susceptibility genes and pancreatic cancer, neural system tumors, and uveal melanoma across GenoMEL. , 2006, Cancer research.

[39]  L. Cannon-Albright,et al.  Population-based prevalence of CDKN2A mutations in Utah melanoma families. , 2006, The Journal of investigative dermatology.

[40]  J. Fridlyand,et al.  Distinct sets of genetic alterations in melanoma. , 2005, The New England journal of medicine.

[41]  J. Shay,et al.  BRAFE600-associated senescence-like cell cycle arrest of human naevi , 2005, Nature.

[42]  R. Halaban Rb/E2F: A two-edged sword in the melanocytic system , 2005, Cancer and Metastasis Reviews.

[43]  A. Trumpp,et al.  Metastasizing melanoma formation caused by expression of activated N-RasQ61K on an INK4a-deficient background. , 2005, Cancer research.

[44]  L. Larue,et al.  Mitf cooperates with Rb1 and activates p21Cip1 expression to regulate cell cycle progression , 2005, Nature.

[45]  N. Pryer,et al.  Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. , 2004, Molecular cancer therapeutics.

[46]  R. DePinho,et al.  Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. , 2003, Genes & development.

[47]  G. Peters,et al.  p16/cyclin-dependent kinase inhibitor 2A deficiency in human melanocyte senescence, apoptosis, and immortalization: possible implications for melanoma progression. , 2003, Journal of the National Cancer Institute.

[48]  N. Hayward,et al.  Loss of p16 expression is associated with histological features of melanoma invasion , 2002, Melanoma research.

[49]  R. Cawthon Telomere measurement by quantitative PCR. , 2002, Nucleic acids research.

[50]  L. Chin,et al.  p16(Ink4a) in melanocyte senescence and differentiation. , 2002, Journal of the National Cancer Institute.

[51]  L. Cannon-Albright,et al.  Failure to detect differences in proliferation status of nevi from CDKN2A mutation carriers and non-carriers. , 2002, The Journal of investigative dermatology.

[52]  A. Berns,et al.  Loss of p16Ink4a confers susceptibility to metastatic melanoma in mice , 2001, Nature.

[53]  R. Fåhraeus,et al.  The p16INK4a tumour suppressor protein inhibits αvβ3 integrin‐mediated cell spreading on vitronectin by blocking PKC‐dependent localization of αvβ3 to focal contacts , 1999 .

[54]  R. DePinho,et al.  The INK4A/ARF locus and its two gene products. , 1999, Current opinion in genetics & development.

[55]  D. Wong,et al.  p16INK4a expression is frequently decreased and associated with 9p21 loss of heterozygosity in sporadic melanoma , 1998, Journal of cutaneous pathology.

[56]  M. Piepkorn,et al.  Expression of the tumor suppressor gene product p16INK4 in benign and malignant melanocytic lesions. , 1998, The Journal of investigative dermatology.

[57]  D. English,et al.  p16 and p21WAF1 protein expression in melanocytic tumors by immunohistochemistry. , 1998, The American Journal of dermatopathology.

[58]  R. Halaban,et al.  Release of cell cycle constraints in mouse melanocytes by overexpressed mutant E2F1E132, but not by deletion of p16INK4A or p21WAF1/CIP1 , 1998, Oncogene.

[59]  Y. Collan,et al.  Loss of expression of the p16INK4/CDKN2 gene in cutaneous malignant melanoma correlates with tumor cell proliferation and invasive stage , 1997, International journal of cancer.

[60]  K. Ogawa,et al.  Loss of heterozygosity at loci on chromosome 4, a common genetic event during the spontaneous immortalization of mouse embryonic fibroblasts , 1997, Molecular carcinogenesis.

[61]  K. Isselbacher,et al.  Prevalence of germ-line mutations in p16, p19ARF, and CDK4 in familial melanoma: analysis of a clinic-based population. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[62]  G. Peters,et al.  Regulation of p16CDKN2 expression and its implications for cell immortalization and senescence , 1996, Molecular and cellular biology.

[63]  T. Saida,et al.  Immunohistochemical detection of CDK4 and 9 16INK4 proteins in cutaneous malignant melanoma , 1996, The British journal of dermatology.

[64]  F. Haluska,et al.  Loss of expression of the p16/cyclin-dependent kinase inhibitor 2 tumor suppressor gene in melanocytic lesions correlates with invasive stage of tumor progression. , 1995, Cancer research.

[65]  W. Clark,et al.  Germline p16 mutations in familial melanoma , 1994, Nature Genetics.

[66]  M. Skolnick,et al.  Analysis of the p16 gene (CDKN2) as a candidate for the chromosome 9p melanoma susceptibility locus , 1994, Nature Genetics.

[67]  G. Hannon,et al.  A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4 , 1993, Nature.

[68]  D. Elder,et al.  Growth and invasion of human melanomas in human skin grafted to immunodeficient mice. , 1993, The American journal of pathology.

[69]  J. Kirkwood,et al.  Homozygous deletions within human chromosome band 9p21 in melanoma. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[70]  Joseph R. Nevins,et al.  The E2F transcription factor is a cellular target for the RB protein , 1991, Cell.

[71]  L. Szekely,et al.  Subcellular localization of the retinoblastoma protein. , 1991, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research.

[72]  P. Nowell,et al.  Characteristics of cultured human melanocytes isolated from different stages of tumor progression. , 1985, Cancer research.