Statistical Analysis of Heavy-Ion Induced Gate Rupture in Power MOSFETs—Methodology for Radiation Hardness Assurance

A methodology for power MOSFET radiation hardness assurance is proposed. It is based on the statistical analysis of destructive events, such as gate oxide rupture. Examples of failure rate calculations are performed.

[1]  Exploration of heavy ion irradiation effects on gate oxide reliability in power MOSFETs , 1995 .

[2]  Lloyd W. Massengill,et al.  Evaluating average and atypical response in radiation effects simulations , 2003 .

[3]  Meftah,et al.  Track formation in SiO2 quartz and the thermal-spike mechanism. , 1994, Physical review. B, Condensed matter.

[4]  J. Barak,et al.  Ion Track Structure and Dynamics in SiO $_{2}$ , 2007, IEEE Transactions on Nuclear Science.

[5]  C. F. Wheatley,et al.  Experimental studies of single-event gate rupture and burnout in vertical power MOSFETs , 1996 .

[6]  J. Barak,et al.  Straggling and extreme cases in the energy deposition by ions in submicron silicon volumes , 2005, IEEE Transactions on Nuclear Science.

[7]  M. Porti,et al.  Using AFM Related Techniques for the Nanoscale Electrical Characterization of Irradiated Ultrathin Gate Oxides , 2007, IEEE Transactions on Nuclear Science.

[8]  C. F. Wheatley,et al.  SEE characterization of vertical DMOSFETs: an updated test protocol , 2003 .

[9]  P. B. Price,et al.  Ion Explosion Spike Mechanism for Formation of Charged-Particle Tracks in Solids , 1965 .

[10]  J. L. Titus,et al.  An Updated Perspective of Single Event Gate Rupture and Single Event Burnout in Power MOSFETs , 2013, IEEE Transactions on Nuclear Science.

[11]  C. F. Wheatley,et al.  Effect of ion energy upon dielectric breakdown of the capacitor response in vertical power MOSFETs , 1998 .

[12]  J. Suehle Ultrathin gate oxide reliability: physical models, statistics, and characterization , 2002 .

[13]  M. R. Pinto,et al.  Single event gate rupture of power DMOS transistors , 1993, Proceedings of IEEE International Electron Devices Meeting.

[14]  Bin Wang,et al.  Observation of latent reliability degradation in ultrathin oxides after heavy-ion irradiation , 2002 .

[15]  J. Sune,et al.  Post soft breakdown conduction in SiO/sub 2/ gate oxides , 2000, International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138).

[16]  Alessandro Paccagnella,et al.  Subpicosecond conduction through thin SiO2 layers triggered by heavy ions , 2006 .

[17]  G. Busatto,et al.  Heavy-Ion Induced Single Event Gate Damage in Medium Voltage Power MOSFETs , 2009, IEEE Transactions on Nuclear Science.

[18]  Kenneth F. Galloway,et al.  A conceptual model of a single-event gate-rupture in power MOSFETs , 1993 .

[19]  T. Wrobel,et al.  On Heavy Ion Induced Hard-Errors in Dielectric Structures , 1987, IEEE Transactions on Nuclear Science.

[20]  peixiong zhao,et al.  Atomic Displacement Effects in Single-Event Gate Rupture , 2008, IEEE Transactions on Nuclear Science.

[21]  Kenneth F. Galloway,et al.  SEGR and SEB in n-channel power MOSFETs , 1996 .

[22]  M. Lenzlinger,et al.  Fowler‐Nordheim Tunneling into Thermally Grown SiO2 , 1969 .

[23]  L. Edmonds,et al.  Breakdown of gate oxides during irradiation with heavy ions , 1998 .

[24]  Martin L. Green,et al.  Precursor ion damage and angular dependence of single event gate rupture in thin oxides , 1998 .

[25]  S. Liu,et al.  Recommended Test Conditions for SEB Evaluation of Planar Power DMOSFETs , 2008, IEEE Transactions on Nuclear Science.

[26]  Ari Virtanen,et al.  Semi-Empirical Model for SEGR Prediction , 2013, IEEE Transactions on Nuclear Science.

[27]  A. Paccagnella,et al.  Impact of time and space evolution of ion tracks in nonvolatile memory cells approaching nanoscale , 2010 .

[28]  J. Barak,et al.  Electron and Ion Tracks in Silicon: Spatial and Temporal Evolution , 2008, IEEE Transactions on Nuclear Science.

[29]  R. Ladbury,et al.  Statistical methods for large flight lots and ultra-high reliability applications , 2005, IEEE Transactions on Nuclear Science.

[30]  C. Poivey,et al.  Radiation Hardness Assurance for Space Systems , 2013 .

[31]  Thomas A. Fischer,et al.  Heavy-Ion-Induced, Gate-Rupture in Power MOSFETs , 1987, IEEE Transactions on Nuclear Science.

[32]  K. A. LaBel,et al.  Effects of Ion Atomic Number on Single-Event Gate Rupture (SEGR) Susceptibility of Power MOSFETs , 2011, IEEE Transactions on Nuclear Science.

[33]  R. L. Pease,et al.  Impact of oxide thickness on SEGR failure in vertical power MOSFETs; development of a semi-empirical expression , 1995 .

[34]  Kai Nordlund,et al.  Molecular dynamics simulations of the structure of latent tracks in quartz and amorphous SiO2 , 2009 .

[35]  E. Lorfèvre,et al.  Synergy of non-ionizing and ionizing processes in the reliability degradation of Power MOSFETs oxide , 2011, 2011 12th European Conference on Radiation and Its Effects on Components and Systems.