Photovoltaic - Electrolysis Cells

[1]  Gavin Conibeer,et al.  A comparison of PV/electrolyser and photoelectrolytic technologies for use in solar to hydrogen energy storage systems , 2007 .

[2]  Gavin Conibeer,et al.  A comparison of hydrogen storage technologies for solar-powered stand-alone power supplies: A photovoltaic system sizing approach , 2007 .

[3]  K. Yamaguchi,et al.  Novel photosensitive materials for hydrogen generation through photovoltaic electricity , 2007 .

[4]  R. Miri,et al.  Electrolyte process of hydrogen production by solar energy , 2007 .

[5]  M. Bosi,et al.  The potential of III‐V semiconductors as terrestrial photovoltaic devices , 2007 .

[6]  A. Nozik,et al.  Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers , 2006 .

[7]  Multiple bandgap combination of thin film photovoltaic cells and a photoanode for efficient hydrogen and oxygen generation by water splitting , 2006 .

[8]  Nelson A. Kelly,et al.  Design and characterization of a robust photoelectrochemical device to generate hydrogen using solar water splitting , 2006 .

[9]  D. L. King,et al.  Solar cell efficiency tables (version 28) , 2006 .

[10]  N. Dhere,et al.  Preparation and characterization of transparent conducting ZnTe:Cu back contact interface layer for CdS∕CdTe solar cell for photoelectrochemical application , 2006 .

[11]  E. T. El Shenawy,et al.  Optimized photovoltiac system for hydrogen production , 2006 .

[12]  Liyuan Han,et al.  High Efficiency of Dye-Sensitized Solar Cell and Module , 2006, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[13]  W. Ingler,et al.  A self-driven p/n-Fe2O3 tandem photoelectrochemical cell for water splitting , 2006 .

[14]  Seigo Ito,et al.  High molar extinction coefficient heteroleptic ruthenium complexes for thin film dye-sensitized solar cells. , 2006, Journal of the American Chemical Society.

[15]  Craig A Grimes,et al.  Use of highly-ordered TiO(2) nanotube arrays in dye-sensitized solar cells. , 2006, Nano letters.

[16]  M. Grätzel,et al.  Mesoscopic solar cells for electricity and hydrogen production from sunlight , 2005 .

[17]  Peng Wang,et al.  Charge separation and efficient light energy conversion in sensitized mesoscopic solar cells based on binary ionic liquids. , 2005, Journal of the American Chemical Society.

[18]  Stuart Licht,et al.  Solar water splitting to generate hydrogen fuel—a photothermal electrochemical analysis , 2005 .

[19]  A. Luque,et al.  Handbook of Photovoltaic Science and Engineering: Luque/Photovoltaic Science and Engineering , 2005 .

[20]  Shuzi Hayase,et al.  Latent gel electrolyte precursors for quasi-solid dye sensitized solar cells , 2005 .

[21]  John F. Geisz,et al.  GaInP/GaAs/GaInAs Monolithic Tandem Cells for High-Performance Solar Concentrators , 2005 .

[22]  N. Dhere,et al.  Photoelectrochemical Water Splitting for Hydrogen Production Using Combination of CIGS2 Solar Cell and RuO2 Photocatalyst , 2005 .

[23]  G. Calzaferri,et al.  Water splitting with silver chloride photoanodes and amorphous silicon solar cells , 2004, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[24]  Eric L. Miller,et al.  A hybrid multijunction photoelectrode for hydrogen production fabricated with amorphous silicon/germanium and iron oxide thin films , 2004 .

[25]  Hironori Arakawa,et al.  Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell , 2004 .

[26]  S. Licht,et al.  Electrochemical potential tuned solar water splitting. , 2003, Chemical communications.

[27]  Eiji Suzuki,et al.  One chip photovoltaic water electrolysis device , 2003 .

[28]  S. Yoshikawa,et al.  Formation of Titania Nanotubes and Applications for Dye-Sensitized Solar Cells , 2003 .

[29]  J Wu,et al.  Diluted II-VI oxide semiconductors with multiple band gaps. , 2003, Physical review letters.

[30]  Joshua M. Pearce,et al.  Evolution of microstructure and phase in amorphous, protocrystalline, and microcrystalline silicon studied by real time spectroscopic ellipsometry , 2003 .

[31]  Peng Wang,et al.  A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte , 2003, Nature materials.

[32]  Akira Tsuyoshi,et al.  A maximum power point tracking for photovoltaic-SPE system using a maximum current controller , 2003 .

[33]  Ashutosh Kumar Singh,et al.  Studies on PV assisted PEC solar cells for hydrogen production through photoelectrolysis of water , 2002 .

[34]  H. Tributsch,et al.  High efficiency solar energy water splitting to generate hydrogen fuel : Probing RuS2 enhancement of multiple band electrolysis , 2002 .

[35]  A. Nakayama,et al.  Photovoltaic water electrolysis using the sputter-deposited a-Si/c-Si solar cells , 2001 .

[36]  Tetsuo Soga,et al.  Over 18% solar energy conversion to generation of hydrogen fuel; theory and experiment for efficient solar water splitting , 2001 .

[37]  Stuart Licht,et al.  Multiple Band Gap Semiconductor/Electrolyte Solar Energy Conversion , 2001 .

[38]  E. Bilgen,et al.  Solar hydrogen from photovoltaic-electrolyzer systems , 2001 .

[39]  Martin A. Green,et al.  Third generation photovoltaics: Ultra‐high conversion efficiency at low cost , 2001 .

[40]  M. K. Kerimov,et al.  Modeling to get hydrogen and oxygen by solar water electrolysis , 2001 .

[41]  John A. Turner,et al.  High-efficiency integrated multijunction photovoltaic/electrolysis systems for hydrogen production , 2001 .

[42]  Stuart Licht,et al.  Efficient Solar Water Splitting, Exemplified by RuO2-Catalyzed AlGaAs/Si Photoelectrolysis , 2000 .

[43]  Robert W. Collins,et al.  EVOLUTIONARY PHASE DIAGRAMS FOR PLASMA-ENHANCED CHEMICAL VAPOR DEPOSITION OF SILICON THIN FILMS FROM HYDROGEN-DILUTED SILANE , 1999 .

[44]  Shyam S. Kocha,et al.  Photoelectrochemical decomposition of water using modified monolithic tandem cells fn2 fn2 Presented , 1999 .

[45]  S. Guha,et al.  Structural, defect, and device behavior of hydrogenated amorphous Si near and above the onset of microcrystallinity , 1999 .

[46]  C. A Schug,et al.  Operational characteristics of high-pressure, high-efficiency water-hydrogen-electrolysis , 1998 .

[47]  M. Zeman,et al.  Amorphous and Microcrystalline Silicon Solar Cells: Modeling, Materials and Device Technology , 1998 .

[48]  Hiroyuki Fujiwara,et al.  Optimization of hydrogenated amorphous silicon p–i–n solar cells with two-step i layers guided by real-time spectroscopic ellipsometry , 1998 .

[49]  Photoelectrochemical decomposition of water utilizing monolithic tandem cells , 1998 .

[50]  Turner,et al.  A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting , 1998, Science.

[51]  Eric L. Miller,et al.  High-efficiency photoelectrochemical hydrogen production using multijunction amorphous silicon photoelectrodes , 1998 .

[52]  Stanford R. Ovshinsky,et al.  Effect of hydrogen dilution on the structure of amorphous silicon alloys , 1997 .

[53]  S. Guha,et al.  Triple-junction amorphous silicon alloy solar cell with 14.6% initial and 13.0% stable conversion efficiencies , 1997 .

[54]  James R. Bolton,et al.  Solar photoproduction of hydrogen: A review , 1996 .

[55]  Allen J. Bard,et al.  Artificial Photosynthesis: Solar Splitting of Water to Hydrogen and Oxygen , 1995 .

[56]  Sarah R. Kurtz,et al.  29.5%‐efficient GaInP/GaAs tandem solar cells , 1994 .

[57]  Mohammad Khaja Nazeeruddin,et al.  Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes , 1993 .

[58]  Pertti Kauranen,et al.  Control of battery backed photovoltaic hydrogen production , 1993 .

[59]  L Barra,et al.  Hydrogen-photovoltaic stand-alone power stations: a sizing method , 1993 .

[60]  F. Galluzzi,et al.  Thin film multi-junction solar cell for water photoelectrolysis , 1993 .

[61]  D. Block,et al.  Efficiency and cost goals for photoenhanced hydrogen production processes , 1992 .

[62]  H. K. Abdel-Aal Storage and transport of solar energy on a massive scale : the hydrogen option , 1992 .

[63]  A Brinner,et al.  Test results of the hysolar 10 kW PV-electrolysis facility , 1992 .

[64]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[65]  H. Arashi,et al.  Hydrogen production from high-temperature steam electrolysis using solar energy , 1991 .

[66]  Joan M. Ogden,et al.  Electrolytic hydrogen from thin-film solar cells , 1990 .

[67]  R. C. Kainthla,et al.  One step method to produce hydrogen by a triple stack amorphous silicon solar cell , 1989 .

[68]  T. Schott,et al.  Optimization of photovoltaic hydrogen production , 1988 .

[69]  M. Fischer Review of hydrogen production with photovoltaic electrolysis systems , 1986 .

[70]  Yu. I. Kharkats,et al.  Hydrogen production by solar energy: Optimization of the plant “solar array + electrolyzer” , 1986 .

[71]  M. F. Weber,et al.  Splitting water with semiconducting photoelectrodes—Efficiency considerations , 1986 .

[72]  James R. Bolton,et al.  Limiting and realizable efficiencies of solar photolysis of water , 1985, Nature.

[73]  O. J. Murphy,et al.  An amorphous silicon-based one-unit photovoltaic electrolyzer , 1985 .

[74]  John O’M. Bockris,et al.  A one-unit photovoltaic electrolysis system based on a triple stack of amorphous silicon (pin) cells , 1985 .

[75]  Holger Steeb,et al.  Solar hydrogen production: Photovoltaic/electrolyzer system with active power conditioning , 1985 .

[76]  J. O'm. Bockris,et al.  ON THE SPLITTING OF WATER , 1985 .

[77]  C. Carpetis,et al.  An assessment of electrolytic hydrogen production by means of photovoltaic energy conversion , 1984 .

[78]  John O’M. Bockris,et al.  Photovoltaic electrolysis - Hydrogen and electricity from water and light , 1984 .

[79]  D. Dini,et al.  Hydrogen production through solar energy water electrolysis , 1983 .

[80]  Replacement of fossil fuels by hydrogen , 1982 .

[81]  C. Carpetis,et al.  A study of water electrolysis with photovoltaic solar energy conversion , 1982 .

[82]  V. Lygerou,et al.  Design of a system for solar energy storage via water electrolysis , 1982 .

[83]  S. M. Pietruszko,et al.  On light‐induced effect in amorphous hydrogenated silicon , 1981 .

[84]  C. Ganibal,et al.  Performance of a photovoltaic electrolysis system , 1981 .

[85]  D. Staebler,et al.  Reversible conductivity changes in discharge‐produced amorphous Si , 1977 .

[86]  D. Carlson,et al.  Amorphous silicon solar cells , 1977, IEEE Transactions on Electron Devices.

[87]  E. Costogue,et al.  Performance data for a terrestrial solar photovoltaic/water electrolysis experiment , 1977 .

[88]  D. Carlson,et al.  AMORPHOUS SILICON SOLAR CELL , 1976 .

[89]  J. J. Loferski,et al.  Photovoltaic Effect in GaAs p-n Junctions and Solar Energy Conversion , 1956 .

[90]  C. S. Fuller,et al.  A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power , 1954 .