Optimal PMU placement for power system state estimation with random component outages

Abstract Phasor measurement units (PMUs) provide globally synchronized measurements of voltage and current phasors in real-time and at a high sampling rate. Hence, they permit improving the state estimation performance in power systems. In this paper we propose a novel method for optimal PMU placement in a power system suffering from random component outages (RCOs). In the proposed method, for a given RCO model, the optimal PMU locations are chosen to minimize the state estimation error covariance. We consider both static and dynamic state estimation. To reduce the complexity, the search for the optimal PMU locations is constrained to the set of locations guaranteeing topological observability. We present numerical results showing the application and scalability of our method using the IEEE 9-bus, 14-bus, 39-bus and 118-bus systems.

[1]  E. Kyriakides,et al.  Optimal Placement of Phasor Measurement Units for Power System Observability , 2008, IEEE Transactions on Power Systems.

[2]  S. Premrudeepreechacharn,et al.  An Optimal PMU Placement Method Against Measurement Loss and Branch Outage , 2007, IEEE Transactions on Power Delivery.

[3]  Y. Alinejad-Beromi,et al.  Optimal PMU placement for power system observability using binary particle swarm optimization and considering measurement redundancy , 2011, Expert Syst. Appl..

[4]  K. Swarup,et al.  Optimal placement of PMU and SCADA measurements for security constrained state estimation , 2011 .

[5]  B. Gou,et al.  Generalized Integer Linear Programming Formulation for Optimal PMU Placement , 2008, IEEE Transactions on Power Systems.

[6]  Rahmat-Allah Hooshmand,et al.  A new method for optimal placement of phasor measurement units to maintain full network observability under various contingencies , 2012 .

[7]  C. S. Indulkar,et al.  Estimation of transmission line parameters from measurements , 2008 .

[8]  Greg Welch,et al.  Optimal PMU placement evaluation for power system dynamic state estimation , 2010, 2010 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT Europe).

[9]  Ali Mohammad Ranjbar,et al.  Optimal PMU Placement by an Equivalent Linear Formulation for Exhaustive Search , 2012, IEEE Transactions on Smart Grid.

[10]  Fred C. Schweppe,et al.  Power System Static-State Estimation, Part I: Exact Model , 1970 .

[11]  Yuanzhan Sun,et al.  Optimal PMU placement for full network observability using Tabu search algorithm , 2006 .

[12]  M. Fotuhi-Firuzabad,et al.  Observability enhancement by optimal PMU placement considering random power system outages , 2011 .

[13]  Joong-Rin Shin,et al.  Optimal placement of phasor measurement units with GPS receiver , 2001, 2001 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.01CH37194).

[14]  M. Fotuhi-Firuzabad,et al.  Optimal Placement of Phasor Measurement Units Using Immunity Genetic Algorithm , 2009, IEEE Transactions on Power Delivery.

[15]  M. Shahidehpour,et al.  Contingency-Constrained PMU Placement in Power Networks , 2010, IEEE Transactions on Power Systems.

[16]  M. Begovic,et al.  Nondominated sorting genetic algorithm for optimal phasor measurement placement , 2002, 2003 IEEE Power Engineering Society General Meeting (IEEE Cat. No.03CH37491).

[17]  M. Begovic,et al.  Nondominated Sorting Genetic Algorithm for Optimal Phasor Maesurement Placement , 2002 .

[18]  Tao Xu,et al.  Electrical Power and Energy Systems , 2015 .

[19]  S.A. Soman,et al.  Optimal Multistage Scheduling of PMU Placement: An ILP Approach , 2008, IEEE Transactions on Power Delivery.

[20]  T. Baldwin,et al.  Power system observability with minimal phasor measurement placement , 1993 .

[21]  B. Gou Optimal Placement of PMUs by Integer Linear Programming , 2008, IEEE Transactions on Power Systems.

[22]  Steven Kay,et al.  Fundamentals Of Statistical Signal Processing , 2001 .

[23]  K.S. Swarup,et al.  Two stage state estimator with phasor measurements , 2009, 2009 International Conference on Power Systems.

[24]  Babak Mozafari,et al.  Optimal placement of PMUs to maintain network observability using a modified BPSO algorithm , 2011 .

[25]  E. Kyriakides,et al.  Measurement Uncertainty Considerations in Optimal Sensor Deployment for State Estimation , 2007, 2007 IEEE International Symposium on Intelligent Signal Processing.

[26]  Rastko Zivanovic,et al.  Implementation of PMU technology in state estimation: an overview , 1996, Proceedings of IEEE. AFRICON '96.

[27]  Suttichai Premrudeepreechacharn,et al.  An Optimal PMU Placement Method Against Measurement Loss and Branch Outage , 2007 .

[28]  A.G. Phadke,et al.  Phasor measurement unit placement techniques for complete and incomplete observability , 2005, IEEE Transactions on Power Delivery.

[29]  Michaël Hurtgen,et al.  Optimal PMU placement using Iterated Local Search , 2010 .

[30]  Chunhua Peng,et al.  A hybrid algorithm based on BPSO and immune mechanism for PMU optimization placement , 2008, 2008 7th World Congress on Intelligent Control and Automation.

[31]  Jianfeng Guo,et al.  Multi-objective optimal PMU placement using a non-dominated sorting differential evolution algorithm , 2010 .

[32]  B. Anderson,et al.  Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[33]  P. Bougerol Kalman filtering with random coefficients and contractions , 1993 .

[34]  Petros G. Voulgaris,et al.  On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..

[35]  Ashok Kumar Pradhan,et al.  An optimal PMU placement technique for power system observability , 2012 .

[36]  James S. Thorp,et al.  Synchronized Phasor Measurement Applications in Power Systems , 2010, IEEE Transactions on Smart Grid.

[37]  Demetrios G. Eliades,et al.  Placement of Synchronized Measurements for Power System Observability , 2009, IEEE Transactions on Power Delivery.