Parallel processing in the mammalian retina

Our eyes send different 'images' of the outside world to the brain — an image of contours (line drawing), a colour image (watercolour painting) or an image of moving objects (movie). This is commonly referred to as parallel processing, and starts as early as the first synapse of the retina, the cone pedicle. Here, the molecular composition of the transmitter receptors of the postsynaptic neurons defines which images are transferred to the inner retina. Within the second synaptic layer — the inner plexiform layer — circuits that involve complex inhibitory and excitatory interactions represent filters that select 'what the eye tells the brain'.

[1]  H. Kolb,et al.  The midget pathways of the primate retina , 2004, Documenta Ophthalmologica.

[2]  Peter Sterling,et al.  Timing of Quantal Release from the Retinal Bipolar Terminal Is Regulated by a Feedback Circuit , 2003, Neuron.

[3]  R. W. Rodieck The First Steps in Seeing , 1998 .

[4]  Wenzhi Sun,et al.  Seeing More Clearly: Recent Advances in Understanding Retinal Circuitry , 2003, Science.

[5]  M A Freed,et al.  Rate of quantal excitation to a retinal ganglion cell evoked by sensory input. , 2000, Journal of neurophysiology.

[6]  P Sterling,et al.  Localization of mGluR6 to dendrites of ON bipolar cells in primate retina , 2000, The Journal of comparative neurology.

[7]  G. Awatramani,et al.  Origin of Transient and Sustained Responses in Ganglion Cells of the Retina , 2000, The Journal of Neuroscience.

[8]  L. Peichl,et al.  Alpha ganglion cells in mammalian retinae: Common properties, species differences, and some comments on other ganglion cells , 1991, Visual Neuroscience.

[9]  D. I. Vaney,et al.  Retinal neurons: cell types and coupled networks. , 2002, Progress in brain research.

[10]  Paul D. Gamlin,et al.  Fireworks in the Primate Retina In Vitro Photodynamics Reveals Diverse LGN-Projecting Ganglion Cell Types , 2003, Neuron.

[11]  Frank S. Werblin,et al.  Starburst Cells Initiate Directional Selective Responses in Rabbit Retina , 2002 .

[12]  R. Masland,et al.  Spatial scale and cellular substrate of contrast adaptation by retinal ganglion cells , 2001, Nature Neuroscience.

[13]  Chuan-Chin Chiao,et al.  Contextual tuning of direction-selective retinal ganglion cells , 2003, Nature Neuroscience.

[14]  Heinz Wässle Die Netzhaut, ein Gehirn im Auge , 2002 .

[15]  Michael J. Berry,et al.  The Neural Code of the Retina , 1999, Neuron.

[16]  Paul Witkovsky,et al.  Dopamine and retinal function , 2004, Documenta Ophthalmologica.

[17]  Lyle J. Borg-Graham,et al.  The computation of directional selectivity in the retina occurs presynaptic to the ganglion cell , 2001, Nature Neuroscience.

[18]  J. Nathans The Evolution and Physiology of Human Color Vision Insights from Molecular Genetic Studies of Visual Pigments , 1999, Neuron.

[19]  David J. Calkins PII: S1350-9462(00)00026-4 , 2001 .

[20]  Paul R. Martin,et al.  Colour processing in the primate retina: recent progress , 1998, The Journal of physiology.

[21]  G H Jacobs,et al.  Human Cone Pigment Expressed in Transgenic Mice Yields Altered Vision , 1999, The Journal of Neuroscience.

[22]  Wenzhi Sun,et al.  Large‐scale morphological survey of mouse retinal ganglion cells , 2002, The Journal of comparative neurology.

[23]  W. R. Levick,et al.  Receptive fields of cat retinal ganglion cells with special reference to the Alpha cells , 1996, Progress in Retinal and Eye Research.

[24]  H. Wassle,et al.  Voltage- and transmitter-gated currents of all-amacrine cells in a slice preparation of the rat retina , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[25]  S. Bloomfield,et al.  Connexin36 Is Essential for Transmission of Rod-Mediated Visual Signals in the Mammalian Retina , 2002, Neuron.

[26]  H. Wässle,et al.  Synaptic Currents Generating the Inhibitory Surround of Ganglion Cells in the Mammalian Retina , 2001, The Journal of Neuroscience.

[27]  A. Cowey,et al.  Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey , 1984, Neuroscience.

[28]  R. Dacheux,et al.  Excitatory dyad synapse in rabbit retina. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[29]  M. Pu,et al.  Theta ganglion cell type of cat retina , 1999 .

[30]  H. Wässle,et al.  Glycinergic amacrine cells of the rat retina , 1998, The Journal of comparative neurology.

[31]  S. DeVries,et al.  Bipolar Cells Use Kainate and AMPA Receptors to Filter Visual Information into Separate Channels , 2000, Neuron.

[32]  C. R. Ingling,et al.  The relationship between spectral sensitivity and spatial sensitivity for the primate r-g X-channel , 1983, Vision Research.

[33]  Markus Meister,et al.  Retina versus Cortex Contrast Adaptation in Parallel Visual Pathways , 2004, Neuron.

[34]  H. Wässle,et al.  Types of bipolar cells in the mouse retina , 2004, The Journal of comparative neurology.

[35]  J. B. Demb,et al.  Bipolar Cells Contribute to Nonlinear Spatial Summation in the Brisk-Transient (Y) Ganglion Cell in Mammalian Retina , 2001, The Journal of Neuroscience.

[36]  J. B. Demb,et al.  Cellular Basis for the Response to Second-Order Motion Cues in Y Retinal Ganglion Cells , 2001, Neuron.

[37]  Richard H. Masland,et al.  The Diversity of Ganglion Cells in a Mammalian Retina , 2002, The Journal of Neuroscience.

[38]  S. DeVries,et al.  Separate blue and green cone networks in the mammalian retina , 2004, Nature Neuroscience.

[39]  Gerald H. Jacobs,et al.  Genetically engineered mice with an additional class of cone photoreceptors: Implications for the evolution of color vision , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[40]  L. Chalupa,et al.  The visual neurosciences , 2004 .

[41]  H. Barlow,et al.  The mechanism of directionally selective units in rabbit's retina. , 1965, The Journal of physiology.

[42]  Paul R. Martin,et al.  Evidence that Blue‐on Cells are Part of the Third Geniculocortical Pathway in Primates , 1997, The European journal of neuroscience.

[43]  D. Dacey,et al.  The Classical Receptive Field Surround of Primate Parasol Ganglion Cells Is Mediated Primarily by a Non-GABAergic Pathway , 2004, The Journal of Neuroscience.

[44]  C. Enroth-Cugell,et al.  The contrast sensitivity of retinal ganglion cells of the cat , 1966, The Journal of physiology.

[45]  B. Boycott,et al.  The morphological types of ganglion cells of the domestic cat's retina , 1974, The Journal of physiology.

[46]  D. Dacey,et al.  Colour coding in the primate retina: diverse cell types and cone-specific circuitry , 2003, Current Opinion in Neurobiology.

[47]  P. Latham,et al.  Population coding in the retina , 1998, Current Opinion in Neurobiology.

[48]  Robert E Marc,et al.  Molecular Phenotyping of Retinal Ganglion Cells , 2002, The Journal of Neuroscience.

[49]  Barry B. Lee,et al.  Horizontal Cells of the Primate Retina: Cone Specificity Without Spectral Opponency , 1996, Science.

[50]  T. Lamb,et al.  The relation between intercellular coupling and electrical noise in turtle photoreceptors. , 1976, The Journal of physiology.

[51]  Sheila Nirenberg,et al.  Decoding neuronal spike trains: How important are correlations? , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Timm Schubert,et al.  Functional expression of connexin57 in horizontal cells of the mouse retina , 2004, The European journal of neuroscience.

[53]  M. Pu,et al.  Theta ganglion cell type of cat retina. , 2000, The Journal of comparative neurology.

[54]  Frank S. Werblin,et al.  Mechanisms and circuitry underlying directional selectivity in the retina , 2002, Nature.

[55]  D. Dacey The mosaic of midget ganglion cells in the human retina , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[56]  Fan Gao,et al.  Functional Architecture of Synapses in the Inner Retina: Segregation of Visual Signals by Stratification of Bipolar Cell Axon Terminals , 2000, The Journal of Neuroscience.

[57]  Peter R. MacLeish,et al.  Connexin 36 forms gap junctions between telodendria of primate cones. , 2004 .

[58]  L. Peichl,et al.  An alternative pathway for rod signals in the rodent retina: rod photoreceptors, cone bipolar cells, and the localization of glutamate receptors. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[59]  H. Barlow,et al.  Changes in the maintained discharge with adaptation level in the cat retina , 1969, The Journal of physiology.

[60]  Paul D. Gamlin,et al.  Functional Architecture of the Photoreceptive Ganglion Cell in Primate Retina: Morphology, Mosaic Organization and Central Targets of Melanopsin Immunostained Cells , 2003 .

[61]  J. Verweij,et al.  L and M Cone Contributions to the Midget and Parasol Ganglion Cell Receptive Fields of Macaque Monkey Retina , 2004, The Journal of Neuroscience.

[62]  R. W. Rodieck Which Cells Code for Color , 1991 .

[63]  Josef Ammermüller,et al.  Expression of Connexin36 in Cone Pedicles and OFF-Cone Bipolar Cells of the Mouse Retina , 2004, The Journal of Neuroscience.

[64]  Michael J. Berry,et al.  The structure and precision of retinal spike trains. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[65]  J. Rizzo,et al.  Outer retinal degeneration: an electronic retinal prosthesis as a treatment strategy. , 2004, Archives of ophthalmology.

[66]  P. Sterling,et al.  Microcircuits for Night Vision in Mouse Retina , 2001, The Journal of Neuroscience.

[67]  E. Surace,et al.  Adeno-associated viral vectors for retinal gene transfer , 2003, Progress in Retinal and Eye Research.

[68]  Stephen A. Baccus,et al.  Segregation of object and background motion in the retina , 2003, Nature.

[69]  J. Nathans,et al.  A Novel Signaling Pathway from Rod Photoreceptors to Ganglion Cells in Mammalian Retina , 1998, Neuron.

[70]  L. Peichl,et al.  Morphology of rabbit retinal ganglion cells projecting to the medial terminal nucleus of the accessory optic system , 1986, The Journal of comparative neurology.

[71]  N. Newman The Visual Neurosciences , 2005 .

[72]  R. Masland Neuronal diversity in the retina , 2001, Current Opinion in Neurobiology.

[73]  G. Shepherd The Synaptic Organization of the Brain , 1979 .

[74]  Arne Valberg,et al.  From Pigments to Perception , 1991, NATO ASI Series.

[75]  J. L. Schnapf,et al.  Electrical coupling between red and green cones in primate retina , 2004, Nature Neuroscience.

[76]  D. Baylor,et al.  An alternative pathway for signal flow from rod photoreceptors to ganglion cells in mammalian retina. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[77]  B. Boycott,et al.  Morphology and mosaic of on- and off-beta cells in the cat retina and some functional considerations , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[78]  B. Boycott,et al.  Functional architecture of the mammalian retina. , 1991, Physiological reviews.

[79]  Richard H Masland,et al.  The population of bipolar cells in the rabbit retina , 2004, The Journal of comparative neurology.

[80]  S. W. Kuffler Discharge patterns and functional organization of mammalian retina. , 1953, Journal of neurophysiology.

[81]  Helga Kolb,et al.  A bistratified amacrine cell and synaptic circuitry in the inner plexiform layer of the retina , 1975, Brain Research.

[82]  J. B. Demb,et al.  Functional Circuitry of the Retinal Ganglion Cell's Nonlinear Receptive Field , 1999, The Journal of Neuroscience.

[83]  Vittorio Porciatti,et al.  Morphological and Functional Abnormalities in the Inner Retina of the rd/rd Mouse , 2002, The Journal of Neuroscience.

[84]  W. R. Taylor,et al.  Diverse Synaptic Mechanisms Generate Direction Selectivity in the Rabbit Retina , 2002, The Journal of Neuroscience.

[85]  M. Meister Multineuronal codes in retinal signaling. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[86]  Richard H Masland,et al.  Extreme Diversity among Amacrine Cells: Implications for Function , 1998, Neuron.

[87]  Heinz Wässle,et al.  Localization of kainate receptors at the cone pedicles of the primate retina , 2001, The Journal of comparative neurology.

[88]  D. Dacey,et al.  Identification of an S-cone Opponent OFF Pathway in the Macaque Monkey Retina: Morphology, Physiology and Possible Circuitry , 2002 .

[89]  M. Tachibana,et al.  A Key Role of Starburst Amacrine Cells in Originating Retinal Directional Selectivity and Optokinetic Eye Movement , 2001, Neuron.

[90]  G. Feng,et al.  Imaging Neuronal Subsets in Transgenic Mice Expressing Multiple Spectral Variants of GFP , 2000, Neuron.

[91]  D. Berson,et al.  Strange vision: ganglion cells as circadian photoreceptors , 2003, Trends in Neurosciences.

[92]  P. Detwiler,et al.  Directionally selective calcium signals in dendrites of starburst amacrine cells , 2002, Nature.

[93]  R H Masland,et al.  Confronting complexity: strategies for understanding the microcircuitry of the retina. , 2000, Annual review of neuroscience.

[94]  M Kamermans,et al.  Hemichannel-Mediated Inhibition in the Outer Retina , 2001, Science.

[95]  A. Joussen,et al.  Latanoprost stimulates secretion of matrix metalloproteinases in tenon fibroblasts both in vitro and in vivo. , 2003, Investigative ophthalmology & visual science.

[96]  Frank S. Werblin,et al.  The Circuitry Underlying Directional Excitation and Inhibition to DS cells , 2004 .

[97]  Heinz Wässle,et al.  The Cone Pedicle, a Complex Synapse in the Retina , 2000, Neuron.

[98]  Frank S. Werblin,et al.  Parallel Visual Processing: a Tutorial of Retinal Function , 2004, Int. J. Bifurc. Chaos.

[99]  K. Mullen,et al.  Differential distributions of red–green and blue–yellow cone opponency across the visual field , 2002, Visual Neuroscience.

[100]  E. Chichilnisky,et al.  Temporal Resolution of Ensemble Visual Motion Signals in Primate Retina , 2003, The Journal of Neuroscience.

[101]  J. Murray,et al.  HANDBOOK OF PSYCHOLOGY , 1951 .

[102]  A. Berntson,et al.  Response characteristics and receptive field widths of on‐bipolar cells in the mouse retina , 2000, The Journal of physiology.

[103]  H. Wässle,et al.  Co-stratification of GABAA receptors with the directionally selective circuitry of the rat retina , 1995, Visual Neuroscience.

[104]  DI Vaney,et al.  Territorial organization of direction-selective ganglion cells in rabbit retina , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[105]  Anand Swaroop,et al.  Expression of photoreceptor-specific nuclear receptor NR2E3 in rod photoreceptors of fetal human retina. , 2004, Investigative ophthalmology & visual science.

[106]  D. Dacey,et al.  Monoamine‐accumulating ganglion cell type of the cat's retina , 1989, The Journal of comparative neurology.

[107]  H. Wässle,et al.  The Synaptic Architecture of AMPA Receptors at the Cone Pedicle of the Primate Retina , 2001, The Journal of Neuroscience.

[108]  F. Werblin,et al.  Vertical interactions across ten parallel, stacked representations in the mammalian retina , 2001, Nature.

[109]  R. Reid,et al.  The koniocellular pathway in primate vision. , 2000, Annual review of neuroscience.

[110]  M A Freed,et al.  Parallel Cone Bipolar Pathways to a Ganglion Cell Use Different Rates and Amplitudes of Quantal Excitation , 2000, The Journal of Neuroscience.

[111]  Z. Pan,et al.  Voltage-dependent Na(+) currents in mammalian retinal cone bipolar cells. , 2000, Journal of neurophysiology.

[112]  R. Masland The fundamental plan of the retina , 2001, Nature Neuroscience.

[113]  Paul R. Martin,et al.  Chromatic sensitivity of ganglion cells in the peripheral primate retina , 2001, Nature.

[114]  Dendritic computation of direction selectivity by retinal ganglion cells. , 2000, Science.

[115]  R H Masland,et al.  Costratification of a population of bipolar cells with the direction‐selective circuitry of the rabbit retina , 1999, The Journal of comparative neurology.

[116]  R H Masland,et al.  Light-evoked responses of bipolar cells in a mammalian retina. , 2000, Journal of neurophysiology.

[117]  Heinz Wässle,et al.  Colour vision: A patchwork of cones , 1999, Nature.

[118]  D. Marshak,et al.  Bipolar cells specific for blue cones in the macaque retina , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[119]  Edward N Pugh,et al.  Connexin36 Forms Synapses Essential for Night Vision , 2002, Neuron.

[120]  Shigetada Nakanishi,et al.  Developmentally regulated postsynaptic localization of a metabotropic glutamate receptor in rat rod bipolar cells , 1994, Cell.

[121]  B. Jones,et al.  Neural remodeling in retinal degeneration , 2003, Progress in Retinal and Eye Research.

[122]  S. Haverkamp,et al.  Different types of synapses with different spectral types of cones underlie color opponency in a bipolar cell of the turtle retina , 1999, Visual Neuroscience.

[123]  Barry B. Lee,et al.  The 'blue-on' opponent pathway in primate retina originates from a distinct bistratified ganglion cell type , 1994, Nature.

[124]  W. R. Taylor,et al.  New directions in retinal research , 2003, Trends in Neurosciences.

[125]  B. Boycott,et al.  Parallel processing in the mammalian retina: the Proctor Lecture. , 1999, Investigative ophthalmology & visual science.

[126]  Akimichi Kaneko,et al.  pH Changes in the Invaginating Synaptic Cleft Mediate Feedback from Horizontal Cells to Cone Photoreceptors by Modulating Ca2+ Channels , 2003, The Journal of general physiology.

[127]  David J. Calkins,et al.  Evidence that Circuits for Spatial and Color Vision Segregate at the First Retinal Synapse , 1999, Neuron.

[128]  H. Wässle,et al.  Immunocytochemical analysis of the mouse retina , 2000, The Journal of comparative neurology.

[129]  Michael J. Berry,et al.  Anticipation of moving stimuli by the retina , 1999, Nature.