Wasserstein geometry of Gaussian measures

This paper concerns the Riemannian/Alexandrov geometry of Gaussian measures, from the view point of the L 2 -Wasserstein geometry. The space of Gaussian measures is of finite dimension, which allows to write down the ex plicit Riemannian metric which in turn induces the L 2 -Wasserstein distance. Moreover, its completion as a metric space provides a complete picture of the singular behavior of the L 2 Wasserstein geometry. In particular, the singular set is st ratified according to the dimension of the support of the Gaussian measures, providing an explicit nontrivial example of Alexandrov space with extremal sets.

[1]  I. Holopainen Riemannian Geometry , 1927, Nature.

[2]  B. O'neill,et al.  The fundamental equations of a submersion. , 1966 .

[3]  I. Olkin,et al.  The distance between two random vectors with given dispersion matrices , 1982 .

[4]  D. Dowson,et al.  The Fréchet distance between multivariate normal distributions , 1982 .

[5]  C. Givens,et al.  A class of Wasserstein metrics for probability distributions. , 1984 .

[6]  M. Knott,et al.  On the optimal mapping of distributions , 1984 .

[7]  Shun-ichi Amari,et al.  Differential-geometrical methods in statistics , 1985 .

[8]  Y. Brenier Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .

[9]  W. Gangbo,et al.  The geometry of optimal transportation , 1996 .

[10]  R. McCann A Convexity Principle for Interacting Gases , 1997 .

[11]  F. Otto THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION , 2001 .

[12]  Arcwise Isometries,et al.  A Course in Metric Geometry , 2001 .

[13]  R. McCann Polar factorization of maps on Riemannian manifolds , 2001 .

[14]  G. Perelman The entropy formula for the Ricci flow and its geometric applications , 2002, math/0211159.

[15]  C. Villani Topics in Optimal Transportation , 2003 .

[16]  G. Burton TOPICS IN OPTIMAL TRANSPORTATION (Graduate Studies in Mathematics 58) By CÉDRIC VILLANI: 370 pp., US$59.00, ISBN 0-8218-3312-X (American Mathematical Society, Providence, RI, 2003) , 2004 .

[17]  C. Villani,et al.  Ricci curvature for metric-measure spaces via optimal transport , 2004, math/0412127.

[18]  Weak curvature conditions and functional inequalities , 2005, math/0506481.

[19]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[20]  J. Lott Some Geometric Calculations on Wasserstein Space , 2006, math/0612562.

[21]  Karl-Theodor Sturm,et al.  On the geometry of metric measure spaces. II , 2006 .

[22]  Karl-Theodor Sturm,et al.  On the geometry of metric measure spaces , 2006 .

[23]  A. Petrunin Semiconcave Functions in Alexandrov???s Geometry , 2013, 1304.0292.

[24]  L-optimal transportation for Ricci flow , 2007 .

[25]  J. Lott Optimal transport and Perelman’s reduced volume , 2008, 0804.0343.

[26]  Cone structure of $L^2$-Wasserstein spaces , 2008, 0812.2752.

[27]  ℒ-optimal transportation for Ricci flow , 2009 .

[28]  R. McCann,et al.  Ricci flow, entropy and optimal transportation , 2010 .

[29]  J. Norris Appendix: probability and measure , 1997 .