An absorbing boundary formulation for the stratified, linearized, ideal MHD equations based on an unsplit, convolutional perfectly matched layer

Perfectly matched layers are a very efficient way to absorb waves on the outer edges of media. We present a stable convolutional unsplit perfectly matched formulation designed for the linearized stratified Euler equations. The technique as applied to the Magneto-hydrodynamic (MHD) equations requires the use of a sponge, which, despite placing the perfectly matched status in question, is still highly efficient at absorbing outgoing waves. We study solutions of the equations in the backdrop of models of linearized wave propagation in the Sun. We test the numerical stability of the schemes by integrating the equations over a large number of wave periods.

[1]  S. Hanasoge,et al.  Helioseismology of Sunspots: A Case Study of NOAA Region 9787 , 2009, 1002.2369.

[2]  J. Bérenger,et al.  Application of the CFS PML to the absorption of evanescent waves in waveguides , 2002, IEEE Microwave and Wireless Components Letters.

[3]  Three-dimensional Numerical Simulations of the Acoustic Wave Field in the Upper Convection Zone of the Sun , 2006, astro-ph/0612364.

[4]  S. Gedney,et al.  An Auxiliary Differential Equation Formulation for the Complex-Frequency Shifted PML , 2010, IEEE Transactions on Antennas and Propagation.

[5]  S. Lele Compact finite difference schemes with spectral-like resolution , 1992 .

[6]  P. Monk,et al.  Optimizing the Perfectly Matched Layer , 1998 .

[7]  On the derivation of the energy flux of linear magnetohydrodynamic waves , 1985 .

[8]  Seismic Halos around Active Regions: A Magnetohydrodynamic Theory , 2007, 0712.3578.

[9]  Stephen D. Gedney,et al.  Convolution PML (CPML): An efficient FDTD implementation of the CFS–PML for arbitrary media , 2000 .

[10]  S. Hanasoge,et al.  NUMERICAL MODELS OF TRAVEL-TIME INHOMOGENEITIES IN SUNSPOTS , 2008, 0808.3628.

[11]  J. Goedbloed,et al.  Principles of Magnetohydrodynamics , 2004 .

[12]  S. Lele,et al.  Computational Acoustics in Spherical Geometry: Steps toward Validating Helioseismology , 2006 .

[13]  P. Charbonneau,et al.  Absorption of p-modes by slender magnetic flux tubes and p-mode lifetimes , 1996 .

[14]  C. M. Rappaport,et al.  Specifying PML conductivities by considering numerical reflection dependencies , 2000 .

[15]  J. Vilotte,et al.  The Newmark scheme as velocity–stress time-staggering: an efficient PML implementation for spectral element simulations of elastodynamics , 2005 .

[16]  D. Komatitsch,et al.  An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation , 2007 .

[17]  Fang Q. Hu,et al.  Absorbing boundary conditions for nonlinear Euler and Navier-Stokes equations based on the perfectly matched layer technique , 2008, J. Comput. Phys..

[18]  Robert F. Stein,et al.  Realistic Solar Convection Simulations , 2000 .

[19]  Gunilla Kreiss,et al.  Perfectly Matched Layers for Hyperbolic Systems: General Formulation, Well-posedness, and Stability , 2006, SIAM J. Appl. Math..

[20]  G. Tóth The ∇·B=0 Constraint in Shock-Capturing Magnetohydrodynamics Codes , 2000 .

[21]  S. Hanasoge,et al.  The Solar Acoustic Simulator: Applications and Results , 2007 .

[22]  Tim Colonius,et al.  MODELING ARTIFICIAL BOUNDARY CONDITIONS FOR COMPRESSIBLE FLOW , 2004 .

[23]  S. Hanasoge,et al.  Impact of locally suppressed wave sources on helioseismic traveltimes , 2007, 0707.1369.

[24]  F. Hu A Stable, perfectly matched layer for linearized Euler equations in unslit physical variables , 2001 .

[25]  M.Y. Hussaini,et al.  Low-Dissipation and Low-Dispersion Runge-Kutta Schemes for Computational Acoustics , 1994 .

[26]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[27]  L. Gizon,et al.  Helioseismology of Sunspots: Confronting Observations with Three-Dimensional MHD Simulations of Wave Propagation , 2008, 0802.1603.

[28]  C. Tsogka,et al.  Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media , 2001 .

[29]  R. Erdélyi,et al.  Forward Modeling of Acoustic Wave Propagation in the Quiet Solar Subphotosphere , 2006 .

[30]  Kristel C. Meza-Fajardo,et al.  A Nonconvolutional, Split-Field, Perfectly Matched Layer for Wave Propagation in Isotropic and Anisotropic Elastic Media: Stability Analysis , 2008 .

[31]  J. Goedbloed,et al.  Principles of Magnetohydrodynamics: Tables of physical quantities , 2004 .

[32]  R. Loughhead,et al.  The Solar Chromosphere , 1974 .

[33]  Roland Martin,et al.  An unsplit convolutional perfectly matched layer technique improved at grazing incidence for the viscoelastic wave equation , 2009 .

[34]  Antonios Giannopoulos,et al.  Complex frequency shifted convolution PML for FDTD modelling of elastic waves , 2007 .

[35]  Patrick Joly,et al.  Stability of perfectly matched layers, group velocities and anisotropic waves , 2003 .

[36]  Eugene N. Parker,et al.  Cosmical Magnetic Fields: Their Origin and their Activity , 2019 .

[37]  M. Collados,et al.  Numerical Modeling of Magnetohydrodynamic Wave Propagation and Refraction in Sunspots , 2006 .

[38]  L. Gizon,et al.  SLiM: a code for the simulation of wave propagation through an inhomogeneous, magnetised solar atmosphere , 2007, 1002.2344.

[39]  H. Spruit,et al.  Local Helioseismology: Three-Dimensional Imaging of the Solar Interior , 2010, 1001.0930.

[40]  K. Thompson Time-dependent boundary conditions for hyperbolic systems, II , 1990 .

[41]  Roland Martin,et al.  An unsplit convolutional perfectly matched layer improved at grazing incidence for seismic wave propagation in poroelastic media , 2008 .

[42]  T. Bogdan Sunspot Oscillations: A Review – (Invited Review) , 2000 .