Analysis of HMA permeability through microstructure characterization and simulation of fluid flow in X-ray CT images

Analysis of HMA Permeability through Microstructure Characterization and Simulation of Fluid Flow in X-Ray CT Images. (December 2004) Aslam Ali Mufleh Al Omari, B.S., Jordan University of Science and Technology; M.S., Jordan University of Science and Technology Chair of Advisory Committee: Dr. Eyad Masad The infiltration of water in asphalt pavements promotes moisture damage primarily through damaging the binder cohesive bond and the adhesive bond between aggregates and binder. Moisture damage is associated with excessive deflection, cracking, and rutting. The first step in addressing the problems caused by the presence of water within pavement systems is quantifying the permeability of hot mix asphalt (HMA) mixes. This dissertation deals with the development of empirical-analytical and numerical approaches for predicting the permeability of HMA. Both approaches rely on the analysis of air void distribution within the HMA microstructure. The empirical-analytical approach relies on the development of modified forms of the Kozeny-Carman equation and determining the material properties involved in this equation through three dimensional microstructure analyses of X-ray Computed Tomography (CT) images. These properties include connected percent air voids (effective porosity), tortuosity, and air void specific surface area. A database of materials and permeability measurements was used to verify the developed predicting equation.

[1]  Robert L. Lytton,et al.  Damage evolution in triaxial compression tests of HMA at high temperatures , 2004 .

[2]  Reynaldo Roque,et al.  Evaluation of Water Damage Using Hot Mix Asphalt Fracture Mechanics , 2003 .

[3]  Robert L. Lytton,et al.  Effect of Moisture Damage on Material Properties and Fatigue Resistance of Asphalt Mixtures , 2004 .

[4]  Craig H. Benson,et al.  Hydraulic Conductivity (Permeability) of Laboratory-Compacted Asphalt Mixtures , 2001 .

[5]  D W Christensen,et al.  Ternary property maps for asphalt concrete , 2003 .

[6]  P. E. Rieke,et al.  Soil Bulk Density Analysis in Three Dimensions by Computed Tomographic Scanning , 1982 .

[7]  George Z. Voyiadjis,et al.  Quantification of damage parameters using X-ray tomography images , 2003 .

[8]  E. C. Childs,et al.  The permeability of porous materials , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[9]  Chia-Jung Hsu Numerical Heat Transfer and Fluid Flow , 1981 .

[10]  E R Brown,et al.  Selection and Evaluation of Field Permeability Device for Asphalt Pavements , 2000 .

[11]  Y. Mualem A New Model for Predicting the Hydraulic Conductivity , 1976 .

[12]  W. D. Kovacs,et al.  An Introduction to Geotechnical Engineering , 1981 .

[13]  M. Peric A finite volume method for the prediction of three-dimensional fluid flow in complex ducts , 1985 .

[14]  Stewart W. Taylor,et al.  Biofilm growth and the related changes in the physical properties of a porous medium: 2. Permeability , 1990 .

[15]  Ernest Zube Compaction Studies of Asphalt Concrete Pavement as Related to the Water Permeability Test , 1962 .

[16]  A. Alzaydi Flow of gases through porous media , 1975 .

[17]  A. Vincent,et al.  Numerical methods in fluid mechanics , 1998 .

[18]  Eyad Masad,et al.  CHARACTERIZATION OF AIR VOID DISTRIBUTION IN ASPHALT MIXES USING X-RAY COMPUTED TOMOGRAPHY , 2002 .

[19]  David L. Allen,et al.  DEVELOPMENT AND PROPOSED IMPLEMENTATION OF A FIELD PERMEABILITY TEST FOR ASPHALT CONCRETE , 2003 .

[20]  E R Brown,et al.  INVESTIGATION OF SEGREGATION OF ASPHALT MIXTURES IN THE STATE OF GEORGIA , 1989 .

[21]  David Newton Richardson,et al.  Drainability Characteristics of Granular Pavement Base Material , 1997 .

[22]  G B Sherman,et al.  VIBRATORY COMPACTION OF ASPHALT CONCRETE PAVEMENTS , 1973 .

[23]  Bouzid Choubane,et al.  INVESTIGATION OF WATER PERMEABILITY OF COARSE GRADED SUPERPAVE PAVEMENTS , 1998 .

[24]  M. Pilotti Viscous flow in three‐dimensional reconstructed porous media , 2003 .

[25]  Tien Fang Fwa,et al.  Permeability Measurement of Base Materials Using Falling-Head Test Apparatus , 1998 .

[26]  Simulation of fluid flow in granular microstructure using a non-staggered grid scheme , 2003 .

[27]  Craig H. Benson,et al.  Evaluating the hydraulic conductivity of GCLs permeated with non-standard liquids , 2000 .

[28]  Nicos Martys,et al.  Transport in sandstone: A study based on three dimensional microtomography , 1996 .

[29]  C. Rhie,et al.  Numerical Study of the Turbulent Flow Past an Airfoil with Trailing Edge Separation , 1983 .

[30]  Thomas Harman,et al.  Quantifying Laboratory Compaction Effects on the Internal Structure of Asphalt Concrete , 1999 .

[31]  Rajib B. Mallick,et al.  AN EVALUATION OF FACTORS AFFECTING PERMEABILITY OF SUPERPAVE DESIGNED PAVEMENTS , 2003 .

[32]  B. Flannery,et al.  Three-Dimensional X-ray Microtomography , 1987, Science.

[33]  Eyad Masad X-ray computed tomography of aggregates and asphalt mixes , 2004 .

[34]  Jay K Lindly,et al.  ESTIMATING PERMEABILITY OF ASPHALT-TREATED BASES , 1995 .

[35]  Björn Birgisson,et al.  Analytical derivation of permeability and numerical simulation of fluid flow in hot-mix asphalt , 2004 .

[36]  T. J. Marshall A RELATION BETWEEN PERMEABILITY AND SIZE DISTRIBUTION OF PORES , 1958 .

[37]  Ignacio Garcia-Bengochea,et al.  The Relation Between Permeability and Pore Size Distribution of Compacted Clayey Silts : Interim Report , 1978 .

[38]  E. C. Childs Dynamics of fluids in Porous Media , 1973 .

[39]  Mustaque Hossain,et al.  Correlation between the Laboratory and Field Permeability Values for the Superpave Pavements , 2003 .

[40]  S. Patankar Numerical Heat Transfer and Fluid Flow , 2018, Lecture Notes in Mechanical Engineering.

[41]  J. Parlange Porous Media: Fluid Transport and Pore Structure , 1981 .

[42]  M. Tia,et al.  Factors Affecting the Strength and Permeability of Concrete Made with Porous Limestone , 1991 .

[43]  C. Crowe,et al.  Engineering fluid mechanics , 1975 .

[44]  Eyad Masad,et al.  RELATIONSHIP BETWEEN THE REPRESENTATIVE VOLUME ELEMENT AND MECHANICAL PROPERTIES OF ASPHALT CONCRETE , 2001 .

[45]  J. B. Walsh,et al.  The effect of pressure on porosity and the transport properties of rock , 1984 .

[46]  Brian D. Prowell,et al.  Evaluation of Measurement Techniques for Asphalt Pavement Density and Permeability , 2002 .

[47]  Louay N. Mohammad,et al.  FUNDAMENTALS OF PERMEABILITY IN ASPHALT MIXTURES , 1999 .

[48]  D. Fredlund,et al.  Soil Mechanics for Unsaturated Soils , 1993 .

[49]  Robert P. Chapuis,et al.  Laboratory permeability tests on sand: influence of the compaction method on anisotropy , 1989 .

[50]  J. Koplik,et al.  Conductivity and permeability from microgeometry , 1984 .

[51]  Mohd Rosli Hainin,et al.  BULK SPECIFIC GRAVITY ROUND-ROBIN USING THE CORELOK VACUUM SEALING DEVICE , 2002 .

[52]  J. Quirk,et al.  Permeability of Porous Media , 1959, Nature.

[53]  Tien Fang Fwa,et al.  Automatic Field Permeameter for Drainage Properties of Porous Asphalt Mixes , 1999 .

[54]  E R Brown,et al.  HOT MIX ASPHALT MATERIALS, MIXTURE DESIGN AND CONSTRUCTION. SECOND EDITION , 1996 .

[55]  James G. Berryman,et al.  Using two‐point correlation functions to characterize microgeometry and estimate permeabilities of sandstones and porous glass , 1996 .

[56]  Bruce Z. Shang,et al.  A Model to Correlate Permeability With Efficient Porosity and Irreducible Water Saturation , 2003 .

[57]  Chun Fai Leung,et al.  Numerical solutions for flow in porous media , 2003 .

[58]  P. Kandhal,et al.  Effect of Mix Gradation on Rutting Potential of Dense-Graded Asphalt Mixtures , 2001 .

[59]  G. W. Maupin Asphalt Permeability Testing in Virginia , 2000 .

[60]  Martys,et al.  Universal scaling of fluid permeability for sphere packings. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[61]  Robert W. Zimmerman,et al.  Predicting the permeability of sandstone from image analysis of pore structure , 2002 .

[62]  E. Masad,et al.  Numerical modelling of fluid flow in microscopic images of granular materials , 2002 .

[63]  G. W. Maupin Asphalt Permeability Testing: Specimen Preparation and Testing Variability , 2001 .

[64]  Pierre M. Adler,et al.  Flow in simulated porous media , 1990 .

[65]  D. Spalding,et al.  A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows , 1972 .

[66]  Eyad Masad,et al.  Three dimensional simulation of fluid flow in X‐ray CT images of porous media , 2004 .

[67]  C. H. Juang,et al.  A probabilistic permeability model and the pore size density function , 1986 .

[68]  Thomas Harman,et al.  PROPOSED METHODOLOGY FOR PREDICTING HMA PERMEABILITY (WITH DISCUSSION) , 2002 .

[69]  Saeed Maghsoodloo,et al.  Developing Critical Field Permeability and Pavement Density Values for Coarse-Graded Superpave Pavements , 2001 .

[70]  S. Irmay,et al.  On the hydraulic conductivity of unsaturated soils , 1954 .

[71]  Tien Fang Fwa,et al.  A New Apparatus for Measuring the Drainage Properties of Porous Asphalt Mixes , 1997 .

[72]  Ricardo Tadeu Lopes,et al.  Analysis of the percentage voids of test and field specimens using computerized tomography , 1999 .

[73]  P. J. Moore,et al.  Determination of Permeability Anisotropy in a Two-Way Permeameter , 1979 .

[74]  S. Ergun Fluid flow through packed columns , 1952 .

[75]  James G. Berryman,et al.  Use of digital image analysis to estimate fluid permeability of porous materials: Application of two-point correlation functions , 1986 .

[76]  S B Hudson,et al.  RELATIONSHIP OF AGGREGATE VOIDAGE TO GRADATION , 1965 .

[77]  Eyad Masad,et al.  Simulation of fluid flow and permeability in cohesionless soils , 2000 .

[78]  S. Torquato,et al.  Random Heterogeneous Materials: Microstructure and Macroscopic Properties , 2005 .

[79]  B D Prowell,et al.  ISSUES PERTAINING TO THE PERMEABILITY CHARACTERISTICS OF COARSE-GRADED SUPERPAVE MIXES , 2002 .

[80]  Richard M. Leahy,et al.  Determination of Internal Deformation Field in Asphalt Cores Using X-Ray Computer Tomography , 1996 .

[81]  P. Grangeat Mathematical framework of cone beam 3D reconstruction via the first derivative of the radon transform , 1991 .

[82]  L. Aylmore,et al.  The use of computer-assisted tomography to determine spatial distribution of soil water content , 1983 .

[83]  B. B. Rajani A simple model for describing variation of permeability with porosity for unconsolidated sands , 1988 .

[84]  F. Dullien Porous Media: Fluid Transport and Pore Structure , 1979 .

[85]  K. Wit Apparatus for Measuring Hydraulic Conductivity of Undisturbed Soil Samples , 1967 .

[86]  Harry R. Cedergren,et al.  Drainage of highway and airfield pavements , 1974 .

[87]  Eyad Masad,et al.  Internal Structure Characterization of Asphalt Concrete Using Image Analysis , 1999 .

[88]  L. Allen Cooley PERMEABILITY OF SUPERPAVE MIXTURES: EVALUATION OF FIELD PERMEAMETERS , 1999 .

[89]  R. D. Wyckoff,et al.  The Flow of Gas‐Liquid Mixtures Through Unconsolidated Sands , 1936 .

[90]  Christoph H. Arns,et al.  Accurate estimation of transport properties from microtomographic images , 2001 .

[91]  J. D. Frost,et al.  Microstructure Study of WesTrack Mixes from X-Ray Tomography Images , 2001 .

[92]  E R Brown,et al.  Effect of Superpave Gyratory Compactor Type on Compacted Hot-Mix Asphalt Density , 2001 .

[93]  Adrian E. Scheidegger,et al.  The physics of flow through porous media , 1957 .

[94]  Naga Shashidhar,et al.  X-Ray Tomography of Asphalt Concrete , 1999 .

[95]  Baoshan Huang,et al.  EVALUATION OF PERMEABILITY OF SUPERPAVE (REGISTERED TRADEMARK) ASPHALT MIXTURES , 2003 .