Delayed failure in silica glass

Stable crack-propagation behaviour in silica glass as a raw material for optical fibres is studied under static tensile stress in various environments such as distilled water, NaCl aqueous solution, air and dry nitrogen gas, and the influence of these environments is discussed. The crack-growth rate in distilled water is obtained qualitatively as a function of the stress intensity factor and temperature, and the activation energy of the cracking process is determined as 97.6 kcal mol−1. The growth rate seems to be unaffected by Na+ and Cl− ions in an NaCl acqueous solution, but is influenced significantly by the humidity in the atmosphere. In a dry atmosphere, the growth rate in Region II cannot be expressed as a single function of the stress intensity factor. A plot of the log of time to failure against the initial stress intensity factor reveals a linear relationship in the environments tested. The critical fracture stress of an optical fibre is evaluated taking account of the crack size on the basis of fracture mechanics concept.