Large-scale mariculture of the sponge Haliclona simulans on floating rafts in Zhao'an Bay, Fujian Province, China

[1]  M. Leal,et al.  Updated Trends on the Biodiscovery of New Marine Natural Products from Invertebrates , 2022, Marine drugs.

[2]  Tania Amelia,et al.  Recent Advances of Marine Sponge-Associated Microorganisms as a Source of Commercially Viable Natural Products , 2022, Marine Biotechnology.

[3]  A. Rahman,et al.  Marine Collagen: A Promising Biomaterial for Wound Healing, Skin Anti-Aging, and Bone Regeneration , 2022, Marine drugs.

[4]  Lianzhong Luo,et al.  Jellynolide A, pokepola esters, and sponalisolides from the aquaculture sponge Spongia officinalis L. , 2021, Phytochemistry.

[5]  Ming Chen,et al.  Transdermal delivery of heparin using low-frequency sonophoresis in combination with sponge spicules for venous thrombosis treatment. , 2021, Biomaterials science.

[6]  Ming Chen,et al.  Rapid Hemostatic Biomaterial from a Natural Bath Sponge Skeleton , 2021, Marine drugs.

[7]  A. Ereskovsky,et al.  Whole-Body Regeneration in Sponges: Diversity, Fine Mechanisms, and Future Prospects , 2021, Genes.

[8]  G. Muyzer,et al.  Subcellular view of host–microbiome nutrient exchange in sponges: insights into the ecological success of an early metazoan–microbe symbiosis , 2021, Microbiome.

[9]  I. Ruiz-Trillo,et al.  The origin of animals: an ancestral reconstruction of the unicellular-to-multicellular transition , 2021, Open Biology.

[10]  J. Zhao,et al.  Cultivation of sponge Haliclona simulans juveniles in a floating sea raft , 2020 .

[11]  C. Longo,et al.  An Innovative IMTA System: Polychaetes, Sponges and Macroalgae Co-Cultured in a Southern Italian In-Shore Mariculture Plant (Ionian Sea) , 2020, Journal of Marine Science and Engineering.

[12]  D. van Oevelen,et al.  Recycling pathways in cold-water coral reefs: Use of dissolved organic matter and bacteria by key suspension feeding taxa , 2020, Scientific Reports.

[13]  Boping Zhou,et al.  Topical Application of Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells in Combination with Sponge Spicules for Treatment of Photoaging , 2020, International journal of nanomedicine.

[14]  S. Mitragotri,et al.  Skin Delivery of siRNA Using Sponge Spicules in Combination with Cationic Flexible Liposomes , 2020, Molecular therapy. Nucleic acids.

[15]  T. Pérez,et al.  Past and present of a Mediterranean small-scale fishery: the Greek sponge fishery—its resilience and sustainability , 2020, Regional Environmental Change.

[16]  Josephine C. Adams,et al.  Modelling the early evolution of extracellular matrix from modern Ctenophores and Sponges. , 2019, Essays in biochemistry.

[17]  S. Mitragotri,et al.  Skin delivery of hyaluronic acid by the combined use of sponge spicules and flexible liposomes. , 2019, Biomaterials science.

[18]  R. Osinga,et al.  Development of an Integrated Mariculture for the Collagen-Rich Sponge Chondrosia reniformis , 2019, Marine drugs.

[19]  R. Manconi,et al.  Long-term experimental in situ farming of Crambe crambe (Demospongiae: Poecilosclerida) , 2018, PeerJ.

[20]  M. Ojika,et al.  New Crambescidin-Type Alkaloids from the Indonesian Marine Sponge Clathria bulbotoxa , 2018, Marine drugs.

[21]  S. Mitragotri,et al.  Skin Delivery of Hydrophilic Biomacromolecules Using Marine Sponge Spicules. , 2017, Molecular pharmaceutics.

[22]  Chen Jun,et al.  Observation of Annual Growth of Two Sponge Explants , 2016 .

[23]  H. G. van der Geest,et al.  Cell kinetics during regeneration in the sponge Halisarca caerulea: how local is the response to tissue damage? , 2015, PeerJ.

[24]  J. Blunt,et al.  Marine natural products. , 2015, Natural product reports.

[25]  E. V. van Loon,et al.  Cell Turnover and Detritus Production in Marine Sponges from Tropical and Temperate Benthic Ecosystems , 2014, PloS one.

[26]  M. Mehbub,et al.  Marine Sponge Derived Natural Products between 2001 and 2010: Trends and Opportunities for Discovery of Bioactives , 2014, Marine drugs.

[27]  R. Rosa,et al.  Marine Microorganism-Invertebrate Assemblages: Perspectives to Solve the “Supply Problem” in the Initial Steps of Drug Discovery , 2014, Marine drugs.

[28]  Jack J. Middelburg,et al.  Surviving in a Marine Desert: The Sponge Loop Retains Resources Within Coral Reefs , 2013, Science.

[29]  H. Nava,et al.  Environmental factors shaping boring sponge assemblages at Mexican Pacific coral reefs , 2013 .

[30]  R. Nys,et al.  Closing the lifecycle for the sustainable aquaculture of the bath sponge Coscinoderma matthewsi , 2012 .

[31]  S. Pomponi,et al.  Cultivation of sponges, sponge cells and symbionts: achievements and future prospects. , 2012, Advances in marine biology.

[32]  R. Hill,et al.  Examination of Marine-Based Cultivation of Three Demosponges for Acquiring Bioactive Marine Natural Products , 2011, Marine drugs.

[33]  N. Pavlos,et al.  In vitro Evaluation of Natural Marine Sponge Collagen as a Scaffold for Bone Tissue Engineering , 2011, International journal of biological sciences.

[34]  M. Page,et al.  Successes and pitfalls of the aquaculture of the sponge Mycale hentscheli , 2011 .

[35]  T. Dailianis,et al.  Aegean Bath Sponges: Historical Data and Current Status , 2011 .

[36]  M. Gokalp,et al.  Sponge Aquaculture Trials in the East-Mediterranean Sea: New Approaches to Earlier Ideas , 2010 .

[37]  J. Wulff Regeneration of sponges in ecological context: is regeneration an integral part of life history and morphological strategies? , 2010, Integrative and comparative biology.

[38]  M. Úriz,et al.  In Situ Aquaculture Methods for Dysidea avara (Demospongiae, Porifera) in the Northwestern Mediterranean , 2010, Marine drugs.

[39]  Wei Zhang,et al.  Bioremediation of bacteria pollution using the marine sponge Hymeniacidon perlevis in the intensive mariculture water system of turbot Scophthalmus maximus , 2010, Biotechnology and bioengineering.

[40]  R. Wijffels,et al.  Cell kinetics of the marine sponge Halisarca caerulea reveal rapid cell turnover and shedding , 2009, Journal of Experimental Biology.

[41]  A. Duckworth Farming Sponges to Supply Bioactive Metabolites and Bath Sponges: A Review , 2009, Marine Biotechnology.

[42]  S. J. Hickford,et al.  Antitumour polyether macrolides: four new halichondrins from the New Zealand deep-water marine sponge Lissodendoryx sp. , 2009, Bioorganic & medicinal chemistry.

[43]  Wei Zhang,et al.  Growth and Survival of Early Juveniles of the Marine Sponge Hymeniacidon perlevis (Demospongiae) Under Controlled Conditions , 2009, Marine Biotechnology.

[44]  R. Manconi,et al.  Mediterranean commercial sponges: over 5000 years of natural history and cultural heritage , 2008 .

[45]  J. Weisz,et al.  Do associated microbial abundances impact marine demosponge pumping rates and tissue densities? , 2008, Oecologia.

[46]  Carsten Wolff,et al.  Bath sponge aquaculture in Torres Strait, Australia: Effect of explant size, farming method and the environment on culture success , 2007 .

[47]  M. Úriz,et al.  Cultivation of Sponge Larvae: Settlement, Survival, and Growth of Juveniles , 2007, Marine Biotechnology.

[48]  M. Page,et al.  Aquaculture trials for the production of biologically active metabolites in the New Zealand sponge Mycale hentscheli (Demospongiae: Poecilosclerida) , 2005 .

[49]  D. Schiel,et al.  Effects of depth and water flow on growth, survival and bioactivity of two temperate sponges cultured in different seasons , 2004 .

[50]  A. Duckworth,et al.  Developing farming structures for production of biologically active sponge metabolites , 2003 .

[51]  A. Duckworth Effect of wound size on the growth and regeneration of two temperate subtidal sponges , 2003 .

[52]  R. Chakraborty,et al.  Isolation of Sesquiterpenoids from Sponge Dysidea Avara and Chemical Modification of Avarol as Potential Antitumor Agents , 2003, Natural product research.

[53]  J. Tramper,et al.  Cultivation of Marine Sponges , 1999, Marine Biotechnology.

[54]  T. Miyata,et al.  Phospholipase C cDNAs from sponge and hydra: antiquity of genes involved in the inositol phospholipid signaling pathway 1 , 1998, FEBS letters.

[55]  V. Fialkov,et al.  Trophic effects of sponge feeding within Lake Baikal's littoral zone. 1. Insitu pumping rates , 1997 .

[56]  S. de Rosa,et al.  A new bioactive derivative of avarol from the marine sponge Dysidea avara. , 1989, Journal of natural products.