Quantum plasmonics get applied

Abstract Plasmons, the electromagnetic excitations coupled with electron waves, possess the intrinsic ability of manipulating light at subwavelength scales down to picometer. This ability not only helps uncovering the fascinating quantum behaviors that strengthen the basic understanding of quantum science, but also enables the inventions of various quantum optoelectronic devices, triggering the birth of quantum plasmonic technology. The past decade has witnessed the flourishing of this technology. In this review, we first focus on fundamental investigations into quantum behaviors for both “isolated” plasmonic nanostructures and “coupled” plasmon-emitter systems, emphasizing new theoretical frameworks and experimental advances. Leveraging on these fundamentals, the progress in exploring and applying quantum plasmonic devices is discussed, such as quantum plasmonic circuits, nanolasers, biochemistry, and spin-orbit interaction devices. Upon summarizing the past and present developments, the future research directions and promising applications are highlighted.

[1]  N. Halas,et al.  Nano-optics from sensing to waveguiding , 2007 .

[2]  Zubin Jacob Quantum plasmonics , 2012 .

[3]  J. Mugnier,et al.  Strong coupling between surface plasmons and excitons in an organic semiconductor. , 2004, Physical review letters.

[4]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[5]  Xiaogang Peng,et al.  Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals , 2003 .

[6]  Yuri S. Kivshar,et al.  Fano Resonances in Nanoscale Structures , 2010 .

[7]  C. Clavero,et al.  Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices , 2014, Nature Photonics.

[8]  M. Zheng,et al.  Measurement of the optical Stark effect in semiconducting carbon nanotubes , 2009 .

[9]  S. Retterer,et al.  Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy. , 2010, Nano letters.

[10]  Jean-Luc Pelouard,et al.  Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane. , 2010, Physical review letters.

[11]  A. Wallraff,et al.  Climbing the Jaynes–Cummings ladder and observing its nonlinearity in a cavity QED system , 2008, Nature.

[12]  C. Manzoni,et al.  Optical stark effects in j-aggregate-metal hybrid nanostructures exhibiting a strong exciton-surface-plasmon-polariton interaction. , 2015, Physical review letters.

[13]  John D Joannopoulos,et al.  Coherent plasmon-exciton coupling in silver platelet-J-aggregate nanocomposites. , 2015, Nano letters.

[14]  W. Barnes,et al.  Strong coupling between surface plasmon polaritons and emitters: a review , 2014, Reports on progress in physics. Physical Society.

[15]  Hyungsoon Im,et al.  Vertically oriented sub-10-nm plasmonic nanogap arrays. , 2010, Nano letters.

[16]  M. S. Tame,et al.  Quantum Plasmonics , 2013 .

[17]  G. M. Akselrod,et al.  Ultrafast Room-Temperature Single Photon Emission from Quantum Dots Coupled to Plasmonic Nanocavities. , 2016, Nano letters.

[18]  Jasper Knoester,et al.  Optical properties of disordered molecular aggregates: a numerical study , 1991 .

[19]  Daiji Fukuda,et al.  Direct observation of bosonic quantum interference of surface plasmon polaritons using photon-number-resolving detectors , 2014 .

[20]  Harry A. Atwater The promise of plasmonics. , 2007 .

[21]  P. Mulvaney,et al.  Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals. , 2009, Nano letters.

[22]  O. Avayu,et al.  Aluminum Nanoantenna Complexes for Strong Coupling between Excitons and Localized Surface Plasmons. , 2015, Nano letters.

[23]  M. D. Lukin,et al.  Quantum Plasmonic Circuits , 2012, IEEE Journal of Selected Topics in Quantum Electronics.

[24]  M. Käll,et al.  Realizing Strong Light-Matter Interactions between Single-Nanoparticle Plasmons and Molecular Excitons at Ambient Conditions. , 2015, Physical review letters.

[25]  Tao Wang,et al.  Molecular electronic plasmonics , 2016 .

[26]  D. Tsai,et al.  Landau Damping and Limit to Field Confinement and Enhancement in Plasmonic Dimers , 2017 .

[27]  Á. Rubio,et al.  Quantum plasmonics: from jellium models to ab initio calculations , 2016 .

[28]  Jennifer A. Dionne,et al.  Observation of quantum tunneling between two plasmonic nanoparticles. , 2013, Nano letters.

[29]  Roman Kolesov,et al.  Wave–particle duality of single surface plasmon polaritons , 2009 .

[30]  Stephen K. Gray,et al.  Strong Coupling and Entanglement of Quantum Emitters Embedded in a Nanoantenna-Enhanced Plasmonic Cavity , 2017 .

[31]  Jinghua Teng,et al.  Silicon multi‐meta‐holograms for the broadband visible light , 2016 .

[32]  M. S. Skolnick,et al.  Strong exciton–photon coupling in an organic semiconductor microcavity , 1998, Nature.

[33]  William W. Yu,et al.  Two-Photon-Pumped Perovskite Semiconductor Nanocrystal Lasers. , 2016, Journal of the American Chemical Society.

[34]  Bengkang Tay,et al.  Tailoring MoS2 Exciton-Plasmon Interaction by Optical Spin-Orbit Coupling. , 2017, ACS nano.

[35]  Chih-Ming Wang,et al.  Aluminum plasmonic multicolor meta-hologram. , 2015, Nano letters.

[36]  F. Moreno,et al.  Quantum optical response of metallic nanoparticles and dimers. , 2012, Optics letters.

[37]  C. Sauvan,et al.  Revisiting Quantum Optics with Surface Plasmons and Plasmonic Resonators , 2017 .

[38]  N. Mortensen,et al.  Plasmonics for emerging quantum technologies , 2016, 1611.03120.

[39]  Olivier J. F. Martin,et al.  Controlling the Fano interference in a plasmonic lattice , 2007 .

[40]  M. Raschke,et al.  Radiative control of dark excitons at room temperature by nano-optical antenna-tip Purcell effect , 2017, Nature Nanotechnology.

[41]  Din Ping Tsai,et al.  Giant enhancement of emission efficiency and light directivity by using hyperbolic metacavity on deep-ultraviolet AlGaN emitter , 2018 .

[42]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[43]  Jeremy J. Baumberg,et al.  Revealing the quantum regime in tunnelling plasmonics , 2012, Nature.

[44]  Xianji Piao,et al.  Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves , 2013, Nature Communications.

[45]  Angel Rubio,et al.  Ab initio nanoplasmonics: The impact of atomic structure , 2014 .

[46]  Yung Doug Suh,et al.  Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. , 2010, Nature materials.

[47]  Din Ping Tsai,et al.  Optical magnetic response in three-dimensional metamaterial of upright plasmonic meta-molecules. , 2011, Optics express.

[48]  Edward S. Barnard,et al.  Photocurrent mapping of near-field optical antenna resonances. , 2011, Nature nanotechnology.

[49]  Shuangchun Wen,et al.  Recent advances in the spin Hall effect of light , 2017, Reports on progress in physics. Physical Society.

[50]  V. Shalaev,et al.  Demonstration of a spaser-based nanolaser , 2009, Nature.

[51]  T. Taliercio,et al.  Hyperbolic metamaterials and surface plasmon polaritons , 2017 .

[52]  G. Haran,et al.  Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit , 2015, Nature Communications.

[53]  D. Baranov,et al.  Novel Nanostructures and Materials for Strong Light–Matter Interactions , 2017 .

[54]  Din Ping Tsai,et al.  Advances in optical metasurfaces: fabrication and applications [Invited]. , 2018, Optics express.

[55]  Bo Li,et al.  Unusual scaling laws for plasmonic nanolasers beyond the diffraction limit , 2017, Nature Communications.

[56]  Á. Rubio,et al.  Anisotropy Effects on the Plasmonic Response of Nanoparticle Dimers. , 2015, The journal of physical chemistry letters.

[57]  J. Reichel,et al.  Exploiting One-Dimensional Exciton-Phonon Coupling for Tunable and Efficient Single-Photon Generation with a Carbon Nanotube. , 2017, Nano letters.

[58]  Romain Quidant,et al.  Coupling of individual quantum emitters to channel plasmons , 2015, Nature Communications.

[59]  A. Borisov,et al.  Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer. , 2012, Nano letters.

[60]  Chennupati Jagadish,et al.  Dual-channel spontaneous emission of quantum dots in magnetic metamaterials , 2013, Nature Communications.

[61]  Ortwin Hess,et al.  Overcoming losses with gain in a negative refractive index metamaterial. , 2010, Physical review letters.

[62]  P. Mulvaney,et al.  Coherent coupling between surface plasmons and excitons in semiconductor nanocrystals , 2009 .

[63]  J. Nunzi,et al.  Picosecond optical Kerr ellipsometry determination of S1→Sn absorption spectra of xanthene dyes , 1998 .

[64]  Angel Rubio,et al.  Performance of nonlocal optics when applied to plasmonic nanostructures , 2013 .

[65]  P. Nordlander,et al.  The effect of a dielectric core and embedding medium on the polarizability of metallic nanoshells , 2002 .

[66]  I. Sagnes,et al.  Near-optimal single-photon sources in the solid state , 2015, Nature Photonics.

[67]  Pei Ru Wu,et al.  Optical Anapole Metamaterial. , 2018, ACS nano.

[68]  Garnett W. Bryant,et al.  Plasmonic properties of metallic nanoparticles: The effects of size quantization , 2010, CLEO: 2011 - Laser Science to Photonic Applications.

[69]  Evelyn L. Hu,et al.  Large spontaneous emission enhancement in plasmonic nanocavities , 2012, Nature Photonics.

[70]  H. Chu,et al.  Highly efficient on-chip direct electronic–plasmonic transducers , 2017 .

[71]  Efe Ilker,et al.  Extreme sensitivity biosensing platform based on hyperbolic metamaterials. , 2016, Nature materials.

[72]  M. Lukin,et al.  Generation of single optical plasmons in metallic nanowires coupled to quantum dots , 2007, Nature.

[73]  Javier Aizpurua,et al.  Bridging quantum and classical plasmonics with a quantum-corrected model , 2012, Nature Communications.

[74]  Javier Aizpurua,et al.  Active quantum plasmonics , 2015, Science Advances.

[75]  Emil Prodan,et al.  Plasmon Hybridization in Nanoparticle Dimers , 2004 .

[76]  Wayne Dickson,et al.  Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies. , 2007, Nano letters.

[77]  Mengtao Sun,et al.  Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits , 2015, Light: Science & Applications.

[78]  W. Vos,et al.  Size-dependent oscillator strength and quantum efficiency of CdSe quantum dots controlled via the local density of states , 2008, 0808.3191.

[79]  Hongxing Xu,et al.  Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics , 2014, Nature Communications.

[80]  George C Schatz,et al.  Structure-activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy. , 2010, Journal of the American Chemical Society.

[81]  Fei Ding,et al.  Gradient metasurfaces: a review of fundamentals and applications , 2017, Reports on progress in physics. Physical Society.

[82]  Lei Zhang,et al.  Dielectric Meta-Holograms Enabled with Dual Magnetic Resonances in Visible Light. , 2017, ACS nano.

[83]  N. Xu,et al.  Room-Temperature Strong Light-Matter Interaction with Active Control in Single Plasmonic Nanorod Coupled with Two-Dimensional Atomic Crystals. , 2017, Nano letters.

[84]  H. Duan,et al.  Resolution limits of electron-beam lithography toward the atomic scale. , 2013, Nano letters (Print).

[85]  M. Raschke,et al.  Hybrid Tip-Enhanced Nanospectroscopy and Nanoimaging of Monolayer WSe2 with Local Strain Control. , 2016, Nano letters.

[86]  A S Sørensen,et al.  Quantum optics with surface plasmons. , 2005, Physical review letters.

[87]  D. Tsai,et al.  Plasmonic photocatalysis , 2013, Reports on progress in physics. Physical Society.

[88]  Lin Wu,et al.  Fowler-nordheim tunneling induced charge transfer plasmons between nearly touching nanoparticles , 2013, 2013 Abstracts IEEE International Conference on Plasma Science (ICOPS).

[89]  Moon-Ho Jo,et al.  Near-field electrical detection of optical plasmons and single plasmon sources , 2009, Proceedings of the Fourth European Conference on Antennas and Propagation.

[90]  Bumsu Lee,et al.  Strong Exciton-Plasmon Coupling in MoS2 Coupled with Plasmonic Lattice. , 2015, Nano letters.

[91]  J. Baumberg,et al.  Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature , 2017, Nature Communications.

[92]  Jaeyoung Heo,et al.  Plasmonic Control of Multi-Electron Transfer and C-C Coupling in Visible-Light-Driven CO2 Reduction on Au Nanoparticles. , 2018, Nano letters.

[93]  M. Lukin,et al.  All-Optical Switch and Transistor Gated by One Stored Photon , 2013, Science.

[94]  U. Kreibig,et al.  Dielectric function and plasma resonances of small metal particles , 1975 .

[95]  David R. Smith,et al.  Metamaterials and Negative Refractive Index , 2004, Science.

[96]  M. Wubs,et al.  Projected Dipole Model for Quantum Plasmonics. , 2015, Physical review letters.

[97]  J. D. Thompson,et al.  Nanophotonic quantum phase switch with a single atom , 2014, Nature.

[98]  Din Ping Tsai,et al.  Versatile Polarization Generation with an Aluminum Plasmonic Metasurface. , 2017, Nano letters.

[99]  K. Bliokh,et al.  Geometrodynamics of spinning light , 2008, 0810.2136.

[100]  Stefan A. Maier,et al.  Quantum Plasmonics , 2016, Proceedings of the IEEE.

[101]  Giorgio Volpe,et al.  Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna , 2010, Science.

[102]  Guanghui Liu,et al.  Strong Light-Matter Interactions in Single Open Plasmonic Nanocavities at the Quantum Optics Limit. , 2017, Physical review letters.

[103]  D P Tsai,et al.  Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots. , 2009, Optics express.

[104]  F. Nori,et al.  Quantum spin Hall effect of light , 2015, Science.

[105]  T. Zeng,et al.  First-Principles Study and Model of Dielectric Functions of Silver Nanoparticles , 2010 .

[106]  Bo Han Chen,et al.  A broadband achromatic metalens in the visible , 2018, Nature Nanotechnology.

[107]  T. Ebbesen,et al.  Modifying chemical landscapes by coupling to vacuum fields. , 2012, Angewandte Chemie.

[108]  Jing Liu,et al.  Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials , 2014, Proceedings of the National Academy of Sciences.

[109]  H. Appel,et al.  Atoms and molecules in cavities, from weak to strong coupling in quantum-electrodynamics (QED) chemistry , 2016, Proceedings of the National Academy of Sciences.

[110]  U. Chettiar,et al.  Loss-free and active optical negative-index metamaterials , 2010, Nature.

[111]  Surface Plasmon Enhanced Strong Exciton-Photon Coupling in Hybrid Inorganic-Organic Perovskite Nanowires. , 2017, Nano letters.

[112]  L Martin-Moreno,et al.  Entanglement of two qubits mediated by one-dimensional plasmonic waveguides. , 2010, Physical review letters.

[113]  G. Rupper,et al.  Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity , 2004, Nature.

[114]  C. Davis Fluorescence: Molecules in a tight spot , 2009 .

[115]  S. Fan,et al.  Linearly polarized light emission from quantum dots with plasmonic nanoantenna arrays. , 2015, Nano letters.

[116]  Ququan Wang,et al.  Plasmon-mediated radiative energy transfer across a silver nanowire array via resonant transmission and subwavelength imaging. , 2010, ACS nano.

[117]  M. Gather,et al.  Electrical pumping and tuning of exciton-polaritons in carbon nanotube microcavities. , 2017, Nature materials.

[118]  E. Hasman,et al.  Spin-Optical Metamaterial Route to Spin-Controlled Photonics , 2013, Science.

[119]  Phillip Christopher,et al.  Direct Photocatalysis by Plasmonic Nanostructures , 2014 .

[120]  Timothy C. Berkelbach,et al.  Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. , 2013, Nature Materials.

[121]  S. A. Maier,et al.  Observation of quantum interference in the plasmonic Hong-Ou-Mandel effect , 2014, 2014 16th International Conference on Transparent Optical Networks (ICTON).

[122]  N. A. Mortensen,et al.  Refractive-Index Sensing with Ultrathin Plasmonic Nanotubes , 2012, Plasmonics.

[123]  Liesbet Lagae,et al.  Electrical detection of confined gap plasmons in metal-insulator-metal waveguides , 2009 .

[124]  Kesharsingh J. Patil,et al.  Self-aggregation of Methylene Blue in aqueous medium and aqueous solutions of Bu4NBr and urea , 2000 .

[125]  A. Jauho,et al.  Unusual resonances in nanoplasmonic structures due to nonlocal response , 2011, 1106.2175.

[126]  Florian Libisch,et al.  Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. , 2013, Nano letters.

[127]  Huanjun Chen,et al.  A centimeter-scale sub-10 nm gap plasmonic nanorod array film as a versatile platform for enhancing light-matter interactions. , 2015, Nanoscale.

[128]  Francisco J. Garcia-Vidal,et al.  Plasmon exciton-polariton lasing , 2016, 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC).

[129]  N. Mortensen,et al.  A generalized non-local optical response theory for plasmonic nanostructures , 2014, Nature Communications.

[130]  H. Giessen,et al.  Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices , 2017, Science.

[131]  Aeneas Wiener,et al.  Surface plasmons and nonlocality: a simple model. , 2013, Physical review letters.

[132]  C. Draxl,et al.  Ab initioapproach for gap plasmonics , 2016, 1609.08800.

[133]  R. T. Hill,et al.  Probing the Ultimate Limits of Plasmonic Enhancement , 2012, Science.

[134]  D. Baranov,et al.  Observation of Tunable Charged Exciton Polaritons in Hybrid Monolayer WS2-Plasmonic Nanoantenna System. , 2017, Nano letters.

[135]  P. Nordlander,et al.  The Fano resonance in plasmonic nanostructures and metamaterials. , 2010, Nature materials.

[136]  Ai Qun Liu,et al.  Plasmon coupling in vertical split-ring resonator metamolecules , 2015, Scientific Reports.

[137]  Xuehua Wang,et al.  A Large‐Scale Flexible Plasmonic Nanorod Array with Multifunction of Strong Photoluminescence Emission and Radiation Enhancement , 2015 .

[138]  A. Danner,et al.  Surface plasmon enhanced photoluminescence in gold capped InGaAs quantum well nanodisk array , 2013 .

[139]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[140]  Mircea Dragoman,et al.  Plasmonics: Applications to nanoscale terahertz and optical devices , 2008 .

[141]  Hao-Chung Kuo,et al.  Deep‐Ultraviolet Hyperbolic Metacavity Laser , 2018, Advanced materials.

[142]  Zhixiang Huang,et al.  Overcoming the losses of a split ring resonator array with gain. , 2011, Optics express.

[143]  P. Nordlander,et al.  Manipulating Coherent Plasmon-Exciton Interaction in a Single Silver Nanorod on Monolayer WSe2. , 2017, Nano letters.

[144]  Nikolay I. Zheludev,et al.  Toroidal Lasing Spaser , 2013, Scientific Reports.

[145]  J. Feist,et al.  Thermalization and cooling of plasmon-exciton polaritons: towards quantum condensation. , 2012, Physical review letters.

[146]  Emil Prodan,et al.  Quantum description of the plasmon resonances of a nanoparticle dimer. , 2009, Nano letters.

[147]  A. Borisov,et al.  Robust subnanometric plasmon ruler by rescaling of the nonlocal optical response. , 2013, Physical review letters.

[148]  S. L. Prosvirnin,et al.  Coherent meta-materials and the lasing spaser , 2008, 0802.2519.

[149]  Dayne F. Swearer,et al.  From tunable core-shell nanoparticles to plasmonic drawbridges: Active control of nanoparticle optical properties , 2015, Science Advances.

[150]  Ulrich Hohenester,et al.  Simulating electron energy loss spectroscopy with the MNPBEM toolbox , 2013, Comput. Phys. Commun..

[151]  A. Zayats,et al.  Reactive tunnel junctions in electrically-driven plasmonic nanorod metamaterials , 2017, Nature Nanotechnology.

[152]  N. Mortensen,et al.  Nonlocal optical response in metallic nanostructures , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[153]  Han-Kyu Choi,et al.  Low-Power Optical Trapping of Nanoparticles and Proteins with Resonant Coaxial Nanoaperture Using 10 nm Gap. , 2018, Nano letters.

[154]  T. Shegai,et al.  Observation of Mode Splitting in Photoluminescence of Individual Plasmonic Nanoparticles Strongly Coupled to Molecular Excitons. , 2017, Nano letters.

[155]  Stephan W Koch,et al.  Vacuum Rabi splitting in semiconductors , 2006 .

[156]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[157]  Room-Temperature Polariton Lasing in All-Inorganic Perovskite Nanoplatelets. , 2017, Nano letters.

[158]  F. D. Abajo,et al.  Nonlocal Effects in the Plasmons of Strongly Interacting Nanoparticles, Dimers, and Waveguides , 2008, 0802.0040.

[159]  E. Pelucchi,et al.  Hot-electron injection in Au nanorod-ZnO nanowire hybrid device for near-infrared photodetection. , 2014, Nano letters.

[160]  I Levchenko,et al.  Recent progress and perspectives of space electric propulsion systems based on smart nanomaterials , 2018, Nature Communications.

[161]  C. Schneider,et al.  Up on the Jaynes-Cummings ladder of a quantum-dot/microcavity system. , 2010, Nature materials.

[162]  Xiang Zhang,et al.  Room-temperature sub-diffraction-limited plasmon laser by total internal reflection. , 2010, Nature materials.

[163]  Y. Wang,et al.  Photonic Spin Hall Effect at Metasurfaces , 2013, Science.

[164]  Gregor Weihs,et al.  Condensation of Semiconductor Microcavity Exciton Polaritons , 2002, Science.

[165]  Fengnian Xia,et al.  Strong light–matter coupling in two-dimensional atomic crystals , 2014, Nature Photonics.

[166]  Thomas H. Reilly,et al.  Nanoscale imaging of exciton transport in organic photovoltaic semiconductors by tip-enhanced tunneling luminescence. , 2009, Nano letters.

[167]  Coherent Coupling of WS2 Monolayers with Metallic Photonic Nanostructures at Room Temperature. , 2016, Nano letters.

[168]  M. Ouyang,et al.  Tailoring light–matter–spin interactions in colloidal hetero-nanostructures , 2010, Nature.

[169]  Junghyun Park,et al.  Electrical tuning of a quantum plasmonic resonance. , 2017, Nature nanotechnology.

[170]  Jens Koch,et al.  Nonlinear response of the vacuum Rabi resonance , 2008, 0807.2882.

[171]  Sarah Lerch,et al.  Quantum Plasmonics: Optical Monitoring of DNA‐Mediated Charge Transfer in Plasmon Rulers , 2016, Advanced materials.

[172]  S. Wakida,et al.  Single-molecular surface-enhanced resonance Raman scattering as a quantitative probe of local electromagnetic field: The case of strong coupling between plasmonic and excitonic resonance , 2014 .

[173]  Lin Wu,et al.  Quantum Plasmon Resonances Controlled by Molecular Tunnel Junctions , 2014, Science.

[174]  Jeremy J. Baumberg,et al.  Single-molecule strong coupling at room temperature in plasmonic nanocavities , 2016, Nature.

[175]  J. Basu,et al.  Broadband room temperature strong coupling between quantum dots and metamaterials. , 2017, Nanoscale.

[176]  N. Zheludev,et al.  Multifold enhancement of quantum dot luminescence in plasmonic metamaterials. , 2010, Physical review letters.

[177]  R. H. Ritchie Plasma Losses by Fast Electrons in Thin Films , 1957 .

[178]  J. Aizpurua,et al.  Rabi Splitting in Photoluminescence Spectra of Hybrid Systems of Gold Nanorods and J-Aggregates. , 2016, The journal of physical chemistry letters.

[179]  M. Steer,et al.  Two-Photon Rabi Splitting in a Coupled System of a Nanocavity and Exciton Complexes. , 2018, Physical review letters.

[180]  Vahid Sandoghdar,et al.  Spontaneous emission of europium ions embedded in dielectric nanospheres. , 2002, Physical review letters.

[181]  J. Hone,et al.  Purcell-enhanced quantum yield from carbon nanotube excitons coupled to plasmonic nanocavities , 2017, Nature Communications.

[182]  Plasmon-exciton polaritons in two-dimensional semiconductor/metal interfaces , 2017, 1710.04879.

[183]  Tal Ellenbogen,et al.  Chromatic plasmonic polarizers for active visible color filtering and polarimetry. , 2012, Nano letters.

[184]  D. Tsai,et al.  Gate-Tunable Conducting Oxide Metasurfaces. , 2015, Nano letters.

[185]  S. Maier,et al.  Experimental Verification of Entanglement Generated in a Plasmonic System. , 2017, Nano letters.

[186]  E. Ozbay Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions , 2006, Science.

[187]  Shuai Yuan,et al.  Strong Photoluminescence Enhancement in All-Dielectric Fano Metasurface with High Quality Factor. , 2017, ACS nano.

[188]  C. Lienau,et al.  Strong Light–Matter Interaction in Quantum Emitter/Metal Hybrid Nanostructures , 2017 .

[189]  J. Khurgin,et al.  The case for quantum plasmonics , 2017, Nature Photonics.

[190]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[191]  James S. Fakonas,et al.  Two-plasmon quantum interference , 2014, Nature Photonics.

[192]  J. Krenn,et al.  Gap plasmonics of silver nanocube dimers , 2016, 1601.07689.

[193]  Naomi J Halas,et al.  Plexciton dynamics: exciton-plasmon coupling in a J-aggregate-Au nanoshell complex provides a mechanism for nonlinearity. , 2011, Nano letters.

[194]  Deren Yang,et al.  Silver Nanoshell Plasmonically Controlled Emission of Semiconductor Quantum Dots in the Strong Coupling Regime. , 2016, ACS nano.

[195]  D. Tsai,et al.  Broadband achromatic optical metasurface devices , 2017, Nature Communications.

[196]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[197]  Emil Prodan,et al.  Quantum plasmonics: optical properties and tunability of metallic nanorods. , 2010, ACS nano.

[198]  Donal D. C. Bradley,et al.  Room Temperature Polariton Emission from Strongly Coupled Organic Semiconductor Microcavities , 1999 .

[199]  Din Ping Tsai,et al.  GaN Metalens for Pixel-Level Full-Color Routing at Visible Light. , 2017, Nano letters.

[200]  J. Berry,et al.  Large polarization-dependent exciton optical Stark effect in lead iodide perovskites , 2016, Nature Communications.

[201]  Ai Qun Liu,et al.  Magnetic plasmon induced transparency in three-dimensional metamolecules , 2012 .

[202]  Thomas R Huser,et al.  Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates. , 2005, Nano letters.

[203]  Limin Tong,et al.  Electrically-driven single-photon sources based on colloidal quantum dots with near-optimal antibunching at room temperature , 2017, Nature Communications.

[204]  Carsten Rockstuhl,et al.  Fully integrated quantum photonic circuit with an electrically driven light source , 2016, Nature Photonics.

[205]  D. E. Chang,et al.  A single-photon transistor using nanoscale surface plasmons , 2007, 0706.4335.

[206]  Igor I. Smolyaninov,et al.  Hyperbolic Metamaterials , 2018 .

[207]  J. Dionne,et al.  Quantum plasmon resonances of individual metallic nanoparticles , 2012, Nature.

[208]  Dang Yuan Lei,et al.  Shaping the Emission Spectral Profile of Quantum Dots with Periodic Dielectric and Metallic Nanostructures , 2014 .

[209]  Risto M. Nieminen,et al.  Kohn-Sham Decomposition in Real-Time Time-Dependent Density-Functional Theory: An Efficient Tool for Analyzing Plasmonic Excitations. , 2017, Journal of chemical theory and computation.

[210]  Cheng-Wei Qiu,et al.  Spiniform phase-encoded metagratings entangling arbitrary rational-order orbital angular momentum , 2017, Light: Science & Applications.

[211]  Guanghui Liu,et al.  On-demand shape and size purification of nanoparticle based on surface area. , 2014, Nanoscale.

[212]  Naomi J. Halas,et al.  Photodetection with Active Optical Antennas , 2011, Science.

[213]  Wei Chen,et al.  Perovskite solar cells - An overview of critical issues , 2017 .

[214]  Emil Prodan,et al.  Structural Tunability of the Plasmon Resonances in Metallic Nanoshells , 2003 .

[215]  E. Purcell Spontaneous Emission Probabilities at Radio Frequencies , 1995 .

[216]  Din Ping Tsai,et al.  Plasmonic Photocatalyst for H2 Evolution in Photocatalytic Water Splitting , 2011 .

[217]  Wenqi Zhu,et al.  Quantum mechanical effects in plasmonic structures with subnanometre gaps , 2016, Nature Communications.

[218]  Florian Mintert,et al.  From Quantum Optics to Quantum Technologies , 2017, 1707.02925.

[219]  H. J. Kimble,et al.  Photon blockade in an optical cavity with one trapped atom , 2005, Nature.

[220]  Antti-Pekka Jauho,et al.  Quantum Corrections in Nanoplasmonics: Shape, Scale, and Material. , 2016, Physical review letters.

[221]  J. Zaumseil,et al.  Plasmonic Crystals for Strong Light–Matter Coupling in Carbon Nanotubes , 2016, Nano letters.

[222]  H. Duan,et al.  Rapid Focused Ion Beam Milling Based Fabrication of Plasmonic Nanoparticles and Assemblies via "Sketch and Peel" Strategy. , 2016, ACS nano.

[223]  I. Brener,et al.  Shaping photoluminescence spectra with magnetoelectric resonances in all-dielectric nanoparticles , 2015 .

[224]  Michel Bosman,et al.  Nanoplasmonics: classical down to the nanometer scale. , 2012, Nano letters.

[225]  Alemayehu Nana Koya,et al.  Charge transfer plasmons: Recent theoretical and experimental developments , 2017 .

[226]  Jeremy J. Baumberg,et al.  Single-molecule optomechanics in “picocavities” , 2016, Science.

[227]  V. Zwiller,et al.  Quantum interference in plasmonic circuits. , 2013, Nature nanotechnology.

[228]  Jing Kong,et al.  Valley-selective optical Stark effect in monolayer WS2. , 2014, Nature materials.

[229]  Gennady Shvets,et al.  Plasmonic Nanolaser Using Epitaxially Grown Silver Film , 2012, Science.

[230]  Sefaattin Tongay,et al.  Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide , 2015, Nature Communications.

[231]  Yuan Wang,et al.  Control of Coherently Coupled Exciton Polaritons in Monolayer Tungsten Disulphide. , 2017, Physical review letters.

[232]  P. Nordlander,et al.  Effects of dielectric screening on the optical properties of metallic nanoshells , 2003 .

[233]  D. Bergman,et al.  Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. , 2003, Physical review letters.

[234]  Din Ping Tsai,et al.  Active dielectric metasurface based on phase‐change medium , 2016 .

[235]  Wenqi Zhu,et al.  Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering , 2014, Nature Communications.

[236]  Chih-Ming Wang,et al.  High-efficiency broadband anomalous reflection by gradient meta-surfaces. , 2012, Nano letters.

[237]  Yuri S. Kivshar,et al.  Microscopic model of Purcell enhancement in hyperbolic metamaterials , 2012, 1205.3955.

[238]  Xu Zhang,et al.  Size-Dependent Plasmonic Resonances from Large-Scale Quantum Simulations. , 2014, The journal of physical chemistry letters.

[239]  A. Brillante,et al.  Exciton–surface plasmon coupling: An experimental investigation , 1982 .

[240]  H. Gibbs,et al.  Arrays of Ag split-ring resonators coupled to InGaAs single-quantum-well gain. , 2010, Optics express.

[241]  George C Schatz,et al.  Real-time tunable lasing from plasmonic nanocavity arrays , 2015, Nature Communications.

[242]  M E Abdelsalam,et al.  Strong coupling between localized plasmons and organic excitons in metal nanovoids. , 2006, Physical review letters.

[243]  F. García-Vidal,et al.  Enhancing Photon Correlations through Plasmonic Strong Coupling , 2017, 1701.08964.

[244]  Jussi Enkovaara,et al.  Localized surface plasmon resonance in silver nanoparticles: Atomistic first-principles time-dependent density-functional theory calculations , 2015, 1503.07234.

[245]  A. Hohenau,et al.  Silver nanowires as surface plasmon resonators. , 2005, Physical review letters.

[246]  M. S. Skolnick,et al.  Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities , 2015, Nature Communications.

[247]  M. Gather,et al.  Near-infrared exciton-polaritons in strongly coupled single-walled carbon nanotube microcavities , 2016, Nature Communications.

[248]  Eric E Fullerton,et al.  Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials. , 2014, Nature nanotechnology.

[249]  T. Ebbesen,et al.  Single-plasmon interferences , 2016, Science Advances.

[250]  E. Narimanov,et al.  Hyperbolic metamaterials , 2013, 2015 11th Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR).

[251]  Samuel Johnson,et al.  Diamond photonics for distributed quantum networks , 2017 .

[252]  C. Manzoni,et al.  Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates , 2013, Nature Photonics.

[253]  Peter Nordlander,et al.  Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes. , 2008, Nano letters.

[254]  F. J. Rodríguez-Fortuño,et al.  Spin–orbit interactions of light , 2015, Nature Photonics.

[255]  A. Borisov,et al.  A classical treatment of optical tunneling in plasmonic gaps: extending the quantum corrected model to practical situations. , 2015, Faraday discussions.

[256]  A Lemaître,et al.  Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. , 2004, Physical review letters.

[257]  Xiang Zhang,et al.  Plasmon lasers at deep subwavelength scale , 2009, Nature.

[258]  Bumsu Lee,et al.  Electrical Tuning of Exciton-Plasmon Polariton Coupling in Monolayer MoS2 Integrated with Plasmonic Nanoantenna Lattice. , 2017, Nano letters.

[259]  A. Ferrari,et al.  Molar Extinction Coefficient of Single-Wall Carbon Nanotubes , 2011 .

[260]  Din Ping Tsai,et al.  Vertical split-ring resonator based nanoplasmonic sensor , 2014 .

[261]  Ming Lun Tseng,et al.  Ultrathin Planar Cavity Metasurfaces. , 2018, Small.

[262]  V. Kulakovskii,et al.  Strong coupling in a single quantum dot–semiconductor microcavity system , 2004, Nature.

[263]  Q. Kong,et al.  Direct Experimental Evidence for Photoinduced Strong-Coupling Polarons in Organolead Halide Perovskite Nanoparticles. , 2016, The journal of physical chemistry letters.