Single-qubit quantum memory exceeding ten-minute coherence time

[1]  Simon J. Devitt,et al.  Blueprint for a microwave trapped ion quantum computer , 2015, Science Advances.

[2]  Michael J. Biercuk,et al.  The role of master clock stability in quantum information processing , 2016, npj Quantum Information.

[3]  Manjin Zhong,et al.  Optically addressable nuclear spins in a solid with a six-hour coherence time , 2015, Nature.

[4]  Simon C. Benjamin,et al.  Freely Scalable Quantum Technologies using Cells of 5-to-50 Qubits with Very Lossy and Noisy Photonic Links , 2014, 1406.0880.

[5]  N. Linke,et al.  High-Fidelity Preparation, Gates, Memory, and Readout of a Trapped-Ion Quantum Bit. , 2014, Physical review letters.

[6]  Michael Schug,et al.  Experimental protocol for high-fidelity heralded photon-to-atom quantum state transfer , 2013, Nature Communications.

[7]  K. Saeedi,et al.  Room-Temperature Quantum Bit Storage Exceeding 39 Minutes Using Ionized Donors in Silicon-28 , 2013, Science.

[8]  Michael J. Biercuk,et al.  Designing a practical high-fidelity long-time quantum memory , 2013, Nature Communications.

[9]  H. Häffner,et al.  Quantum information processing with trapped electrons and superconducting electronics , 2013, 1304.4710.

[10]  R. Ozeri,et al.  Nonlinear single-spin spectrum analyzer. , 2013, Physical review letters.

[11]  C. Monroe,et al.  Scaling the Ion Trap Quantum Processor , 2013, Science.

[12]  K. Brown,et al.  100-fold reduction of electric-field noise in an ion trap cleaned with in situ argon-ion-beam bombardment. , 2012, Physical review letters.

[13]  Liang Jiang,et al.  Unforgeable noise-tolerant quantum tokens , 2011, Proceedings of the National Academy of Sciences.

[14]  G. Milburn,et al.  Quantum interface between an electrical circuit and a single atom. , 2011, Physical review letters.

[15]  D. Cory,et al.  Noise spectroscopy through dynamical decoupling with a superconducting flux qubit , 2011 .

[16]  Dieter Suter,et al.  Robust dynamical decoupling for quantum computing and quantum memory. , 2011, Physical review letters.

[17]  C. Ospelkaus,et al.  Decoherence due to elastic Rayleigh scattering. , 2010, Physical review letters.

[18]  J Mizrahi,et al.  Ultrafast gates for single atomic qubits. , 2010, Physical review letters.

[19]  J. P. Home,et al.  Realization of a programmable two-qubit quantum processor , 2009, 0908.3031.

[20]  David J. Wineland,et al.  Complete Methods Set for Scalable Ion Trap Quantum Information Processing , 2009, Science.

[21]  Michael J. Biercuk,et al.  Optimized dynamical decoupling in a model quantum memory , 2008, Nature.

[22]  G. Uhrig,et al.  Exact results on dynamical decoupling by π pulses in quantum information processes , 2008 .

[23]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[24]  D. Matsukevich,et al.  Entanglement of single-atom quantum bits at a distance , 2007, Nature.

[25]  E. Knill,et al.  Simplified motional heating rate measurements of trapped ions , 2007, 0707.1528.

[26]  R. B. Blakestad,et al.  Fluorescence during Doppler cooling of a single trapped atom , 2007, 0707.1314.

[27]  Christopher Monroe,et al.  Quantum Networks with Trapped Ions , 2007 .

[28]  E. Knill,et al.  Randomized Benchmarking of Quantum Gates , 2007, 0707.0963.

[29]  C. Monroe,et al.  Scaling and suppression of anomalous heating in ion traps. , 2006, Physical review letters.

[30]  F. Schmidt-Kaler,et al.  Robust entanglement , 2005, quant-ph/0508021.

[31]  R. B. Blakestad,et al.  Long-lived qubit memory using atomic ions. , 2005, Physical review letters.

[32]  D. Leibfried,et al.  Hyperfine coherence in the presence of spontaneous photon scattering. , 2005, Physical review letters.

[33]  Archil Avaliani,et al.  Quantum Computers , 2004, ArXiv.

[34]  C. Monroe,et al.  Observation of entanglement between a single trapped atom and a single photon , 2004, Nature.

[35]  Lu-Ming Duan,et al.  Scalable trapped ion quantum computation with a probabilistic ion-photon mapping , 2004, Quantum Inf. Comput..

[36]  C. Monroe,et al.  Architecture for a large-scale ion-trap quantum computer , 2002, Nature.

[37]  M. Sellars,et al.  Accurate measurement of the 12.6 GHz "clock" transition in trapped (171)Yb(+) ions. , 1997, IEEE transactions on ultrasonics, ferroelectrics, and frequency control.

[38]  David Blair,et al.  Very high Q microwave spectroscopy on trapped /sup 171/Yb/sup +/ ions: application as a frequency standard , 1995 .

[39]  D. Wineland,et al.  A 303-MHz frequency standard based on trapped Be/sup +/ ions , 1991, IEEE Transactions on Instrumentation and Measurement.

[40]  J. S. Frye High-Resolution NMR of Solids , 1990 .

[41]  Stephen Wiesner,et al.  Conjugate coding , 1983, SIGA.

[42]  Haeberlen Ulrich,et al.  High resolution NMR in solids : selective averaging , 1976 .