The paths embedding of the arrangement graphs with prescribed vertices in given position

Let n and k be positive integers with n−k≥2. The arrangement graph An,k is recognized as an attractive interconnection networks. Let x, y, and z be three different vertices of An,k. Let l be any integer with $d_{A_{n,k}}(\mathbf{x},\mathbf{y}) \le l \le \frac{n!}{(n-k)!}-1-d_{A_{n,k}}(\mathbf{y},\mathbf{z})$. We shall prove the following existance properties of Hamiltonian path: (1) for n−k≥3 or (n,k)=(3,1), there exists a Hamiltonian path R(x,y,z;l) from x to z such that dR(x,y,z;l)(x,y)=l; (2) for n−k=2 and n≥5, there exists a Hamiltonian path R(x,y,z;l) except for the case that x, y, and z are adjacent to each other.

[1]  Jimmy J. M. Tan,et al.  Panpositionable hamiltonicity and panconnectivity of the arrangement graphs , 2008, Appl. Math. Comput..

[2]  Jun-Ming Xu,et al.  Panconnectivity of locally twisted cubes , 2006, Appl. Math. Lett..

[3]  Khaled Day,et al.  Arrangement Graphs: A Class of Generalized Star Graphs , 1992, Inf. Process. Lett..

[4]  Sheldon B. Akers,et al.  A Group-Theoretic Model for Symmetric Interconnection Networks , 1989, IEEE Trans. Computers.

[5]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[6]  Sheldon B. Akers,et al.  The Star Graph: An Attractive Alternative to the n-Cube , 1994, ICPP.

[7]  Jimmy J. M. Tan,et al.  Fault hamiltonicity and fault hamiltonian connectivity of the arrangement graphs , 2004, IEEE Transactions on Computers.

[8]  Jun-Ming Xu,et al.  The forwarding indices of augmented cubes , 2007, Inf. Process. Lett..

[9]  Jun-Ming Xu,et al.  Panconnectivity and edge-fault-tolerant pancyclicity of augmented cubes , 2007, Parallel Comput..

[10]  Xiaohua Jia,et al.  Optimal Embeddings of Paths with Various Lengths in Twisted Cubes , 2007, IEEE Transactions on Parallel and Distributed Systems.

[11]  Lih-Hsing Hsu,et al.  Cycles in cube-connected cycles graphs , 2014, Discret. Appl. Math..

[12]  Jimmy J. M. Tan,et al.  Panpositionable hamiltonicity of the alternating group graphs , 2007, Networks.

[13]  Jimmy J. M. Tan,et al.  Bipanconnectivity and edge-fault-tolerant bipancyclicity of hypercubes , 2003, Inf. Process. Lett..

[14]  Gen-Huey Chen,et al.  Cycles in butterfly graphs , 2000, Networks.

[15]  Jou-Ming Chang,et al.  Panconnectivity, fault-tolerant hamiltonicity and hamiltonian-connectivity in alternating group graphs , 2004, Networks.

[16]  Pao-Lien Lai,et al.  The two-equal-disjoint path cover problem of Matching Composition Network , 2008, Inf. Process. Lett..

[17]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .