Vapochromic Behaviour of M[Au(CN)2]2-Based Coordination Polymers (M = Co, Ni)

A series of M[Au(CN)2]2(analyte)x coordination polymers (M = Co, Ni; analyte = dimethylsulfoxide (DMSO), N,N-dimethylformamide (DMF), pyridine; x = 2 or 4) was prepared and characterized. Addition of analyte vapours to solid M(μ-OH2)[Au(CN)2]2 yielded visible vapochromic responses for M = Co but not M = Ni; the IR νCN spectral region changed in every case. A single crystal structure of Zn[Au(CN)2]2(DMSO)2 revealed a corrugated 2-D layer structure with cis-DMSO units. Reacting a Ni(II) salt and K[Au(CN)2] in DMSO yielded the isostructural Ni[Au(CN)2]2(DMSO)2 product. Co[Au(CN)2]2(DMSO)2 and M[Au(CN)2]2(DMF)2 (M = Co, Ni) complexes have flat 2-D square-grid layer structures with trans-bound DMSO or DMF units; they are formed via vapour absorption by solid M(μ-OH2)[Au(CN)2]2 and from DMSO or DMF solution synthesis. Co[Au(CN)2]2(pyridine)4 is generated via vapour absorption by Co(μ-OH2)[Au(CN)2]2; the analogous Ni complex is synthesized by immersion of Ni(μ-OH2)[Au(CN)2]2 in 4% aqueous pyridine. Similar immersion of Co(μ-OH2)[Au(CN)2]2 yielded Co[Au(CN)2]2(pyridine)2, which has a flat 2-D square-grid structure with trans-pyridine units. Absorption of pyridine vapour by solid Ni(μ-OH2)[Au(CN)2]2 was incomplete, generating a mixture of pyridine-bound complexes. Analyte-free Co[Au(CN)2]2 was prepared by dehydration of Co(μ-OH2)[Au(CN)2]2 at 145 °C; it has a 3-D diamondoid-type structure and absorbs DMSO, DMF and pyridine to give the same materials as by vapour absorption from the hydrate.

[1]  J. Černák Cyanocomplexes with one-dimensional structures: preparations, crystal structures and magnetic properties , 2002 .

[2]  G. Pálinkás,et al.  A versatile solvent-free mechanochemical route to the synthesis of heterometallic dicyanoaurate-based coordination polymers. , 2011, Inorganic chemistry.

[3]  T. Roisnel,et al.  WinPLOTR: A Windows Tool for Powder Diffraction Pattern Analysis , 2001 .

[4]  Jeffrey R. Long,et al.  Cyano-Bridged Re6Q8 (Q: S, Se) Cluster-Cobalt(II) Framework Materials: Versatile Solid Chemical Sensors. , 2000 .

[5]  B. Patrick,et al.  Gold-gold interactions as crystal engineering design elements in heterobimetallic coordination polymers. , 2001, Inorganic chemistry.

[6]  Richard I. Cooper,et al.  CRYSTALS version 12: software for guided crystal structure analysis , 2003 .

[7]  Hershel Jude,et al.  A new class of platinum (II) vapochromic salts. , 2004, Journal of the American Chemical Society.

[8]  D. Leznoff,et al.  Synthesis, structure and magnetic properties of 2-D and 3-D [cation]{M[Au(CN)2]3} (M = Ni, Co) coordination polymers , 2007 .

[9]  M. Shatruk,et al.  Cyanide‐Bridged Complexes of Transition Metals: A Molecular Magnetism Perspective , 2009 .

[10]  D. Leznoff,et al.  Cu[Au(CN)2]2(DMSO)2: golden polymorphs that exhibit vapochromic behavior. , 2004, Journal of the American Chemical Society.

[11]  R. Podgajny,et al.  A Decade of Octacyanides in Polynuclear Molecular Materials , 2011 .

[12]  Jiri Janata,et al.  Chemical Sensors: An Introduction for Scientists and Engineers , 2007 .

[13]  Dagmar Ringe,et al.  POVScript+: a program for model and data visualization using persistence of vision ray-tracing , 2003 .

[14]  K. R. Mann,et al.  Inclusion of Organic Vapors by Crystalline, Solvatochromic [Pt(aryl isonitrile)4][Pd(CN)4] Compounds. “Vapochromic” Environmental Sensors , 1995 .

[15]  Xiaobo Li,et al.  Reversible luminescent reaction of amines with copper(I) cyanide. , 2010, Chemical communications.

[16]  Louis J. Farrugia,et al.  ORTEP-3 for Windows - a version of ORTEP-III with a Graphical User Interface (GUI) , 1997 .

[17]  V. Yam,et al.  Photochemistry and Photophysics of Coordination Compounds: Gold , 2007 .

[18]  K. Nakamoto Infrared and Raman Spectra of Inorganic and Coordination Compounds , 1978 .

[19]  Kent R. Mann,et al.  Structural Investigations of Vapochromic Behavior. X-ray Single-Crystal and Powder Diffraction Studies of [Pt(CN-iso-C3H7)4][M(CN)4] for M = Pt or Pd , 1998 .

[20]  M. Liang,et al.  3D porous and 3D interpenetrating triple framework structures constructed by aurophilicity-coordination interplay in [Mn[Au(CN)2]2(H2O)2]n and [KFe[Au(CN)2]3]n. , 2003, Chemical communications.

[21]  Miguel Monge,et al.  (Tl[Au(C(6)Cl(5))(2)])(n): A vapochromic complex. , 2003, Journal of the American Chemical Society.

[22]  K. R. Mann,et al.  An electronic nose transducer array of vapoluminescent platinum(II) double salts. , 2001, Journal of the American Chemical Society.

[23]  H. Kanoh,et al.  Flexible Two-Dimensional Square-Grid Coordination Polymers: Structures and Functions , 2010, International journal of molecular sciences.

[24]  Daniel B. Leznoff,et al.  Coordination polymers with cyanoaurate building blocks: Potential new industrial applications for gold , 2005 .

[25]  A. Balch,et al.  Remarkable Luminescence Behaviors and Structural Variations of Two-CoordinateGold(I) Complexes , 2007 .

[26]  J. Atwood,et al.  Guest Transport in a Nonporous Organic Solid via Dynamic van der Waals Cooperativity , 2002, Science.

[27]  A. Vogler,et al.  Photochemistry and Photophysics of Coordination Compounds , 1987 .

[28]  D. Hashizume,et al.  Vapochromic and mechanochromic tetrahedral gold(I) complexes based on the 1,2-bis(diphenylphosphino)benzene ligand. , 2010, Chemistry.

[29]  S. Abrahams,et al.  Cobalt cyanoaurate: Crystal structure of a component from cobalt‐hardened gold electroplating baths , 1982 .

[30]  Hua-Zhong Yu,et al.  Polymorphism of Zn[Au(CN)2]2 and its luminescent sensory response to NH3 vapor. , 2008, Journal of the American Chemical Society.

[31]  Ian M. Hill,et al.  Enantiomerically selective vapochromic sensing , 2010 .

[32]  Miguel Monge,et al.  {Tl[Au(C6Cl5)2]}n: A Vapochromic Complex , 2003 .

[33]  A. Balch,et al.  Molecular accordion: vapoluminescence and molecular flexibility in the orange and green luminescent crystals of the dimer, Au2(μ-bis-(diphenylphosphino)ethane)2Br2. , 2011, Journal of the American Chemical Society.

[34]  H. Schmidbaur,et al.  Aurophilic interactions as a subject of current research: an up-date. , 2012, Chemical Society Reviews.

[35]  Robert C. Thompson,et al.  An aurophilicity-determined 3-D bimetallic coordination polymer: using [Au(CN)2]− to increase structural dimensionality through gold⋯gold bonds in (tmeda)Cu[Au(CN)2]2 , 2001 .

[36]  J. Real,et al.  Thermo-, piezo-, photo- and chemo-switchable spin crossover iron(II)-metallocyanate based coordination polymers , 2011 .

[37]  Feilong Jiang,et al.  Remarkable variations in the luminescence of frozen solutions of [Au[C(NHMe)(2)](2)](PF(6)) x 0.5(acetone). Structural and spectroscopic studies of the effects of anions and solvents on Gold(I) carbene complexes. , 2002, Journal of the American Chemical Society.

[38]  J. Ruiz,et al.  Aurophilicity as a cofactor in crystal engineering. Dicyanoaurate(I) anion as a building block in a novel Co(II)-Au(I) bimetallic assembly. , 2002, Chemical communications.

[39]  S. Kitagawa,et al.  Soft porous crystals. , 2009, Nature chemistry.

[40]  Saeed Attar,et al.  Intermolecular interactions in polymorphs of trinuclear gold(I) complexes: insight into the solvoluminescence of Au(I)3(MeN=COMe)3. , 2005, Inorganic chemistry.

[41]  R. Galassi,et al.  Chemistry and optoelectronic properties of stacked supramolecular entities of trinuclear gold(I) complexes sandwiching small organic acids. , 2001, Journal of the American Chemical Society.

[42]  Michael J. Katz,et al.  Structure and multinuclear solid-state NMR of a highly birefringent lead-gold cyanide coordination polymer. , 2006, Journal of the American Chemical Society.

[43]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[44]  K. Dunbar,et al.  Chemistry of Transition Metal Cyanide Compounds: Modern Perspectives , 2007 .

[45]  Cerrie W. Rogers Luminescent molecular sensors based on analyte coordination to transition-metal complexes , 2002 .

[46]  R. Robson,et al.  Six Interpenetrating Quartz‐Like Nets in the Structure of ZnAu2(CN)4 , 1995 .

[47]  Jason C. Cole,et al.  DASH: a program for crystal structure determination from powder diffraction data , 2006 .

[48]  A. Balch,et al.  Solvent‐Stimulated Luminescence from the Supramolecular Aggregation of a Trinuclear Gold(I) Complex that Displays Extensive Intermolecular AuċAu Interactions , 1997 .

[49]  Michael J. Katz,et al.  A new basic motif in cyanometallate coordination polymers: structure and magnetic behavior of M(mu-OH2)2[Au(CN)2]2 (M=Cu, Ni). , 2006, Chemistry.

[50]  Michael J. Ferguson,et al.  Intercalation of alcohols in Ag sulfonates: topotactic behavior despite flexible layers. , 2002, Inorganic chemistry.

[51]  Peter S. White,et al.  NRCVAX ― an interactive-program system for structure analysis , 1989 .

[52]  G. Shimizu,et al.  The first example of a functional pillared metal sulfonate network , 2001 .

[53]  G. Pálinkás,et al.  Synthesis and structure of a cyanoaurate-based organotin polymer exhibiting unusual ion-exchange properties. , 2009, Journal of the American Chemical Society.

[54]  Richard Eisenberg,et al.  Linear Chain Au(I) Dimer Compounds as Environmental Sensors: A Luminescent Switch for the Detection of Volatile Organic Compounds , 1998 .

[55]  M. Kilkenny,et al.  Tetrakis(4-aminopyridine)diisothiocyanatonickel(II) and its clathrates with EtOH, Me2CO and DMSO: structures, thermal stabilities and guest exchange , 2001 .

[56]  H. Patterson,et al.  Oligomerization of Au(CN)2- and Ag(CN)2- Ions in Solution via Ground-State Aurophilic and Argentophilic Bonding , 2000 .

[57]  S. Batten,et al.  Malleable coordination networks , 2001 .

[58]  C. Strasser,et al.  "On-off" Au(I)...Cu(I) interactions in a Au(NHC)2 luminescent vapochromic sensor. , 2010, Journal of the American Chemical Society.

[59]  C. L. Barnes,et al.  ORTEP-3 for Windows - a version of ORTEP-III with a Graphical User Interface (GUI) by J. Farrugia , 1997 .

[60]  Michael J. Katz,et al.  The use of aurophilic and other metal-metal interactions as crystal engineering design elements to increase structural dimensionality. , 2008, Chemical Society reviews.

[61]  Tania Lasanta,et al.  Combining aurophilic interactions and halogen bonding to control the luminescence from bimetallic gold-silver clusters. , 2010, Journal of the American Chemical Society.