Signal subspace methods for speech enhancement

This thesis focus on the theory analysis and algorithm aspects of signal subspace methods used for speech enhancement in digital speech processing The problem is approached by initially performing an analysis of subspace principles applied to speech signals in order to characterize the usefulness of de ning a signal subspace for this application The theory is formulated by means of the singular value decomposition or the eigendecomposition and subspace methods are linked to ltering in the frequency domain Nonparametric speech enhancement using linear signal subspace based estimation of the clean signal from the noisy signal is reviewed and connections between existing algorithms and litterature are explored An analysis of the practical behavior of the estimators is given and aspects regarding their performance in the case with prewhitening is covered The relation to the popular spectral subtraction approach is discussed and the origin of the musical noise is pointed out A possible way to reduce the latter is devised In the noisy case model based estimation is a nonlinear problem which is normally solved by iterative techniques However a new idea based on multi microphone inverse ltering is presented where the solution is obtained by subspace methods The algorithm aspects of signal subspace methods are discussed in terms of the rank revealing ULV ULLV decompositions which are numerically stable and can be cheaply updated when a new data sample is present The potential of the decompositions when applied to speech problems are analyzed and di erent estimation strategies are suggested Again the practical behavior of the estimators are analyzed A recursive ULLV algorithm for a so called sliding window estimation is presented which is new in its complete treatment and implementation Many aspects of the algorithm are discussed in details and important considerations are pointed out Both the ULV ULLV algorithms and the subspace based enhancement algorithms are implemented in a Matlab toolbox Throughout the thesis the speech enhancement application illustrates the power and ro bustness of the subspace approach and a number of illustrative examples are given Peter S K Hansen iii

[1]  Peter Søren K. Hansen The ULV/ULLV toolbox for matlab. , 1997 .

[2]  R. Kumaresan,et al.  Estimating the parameters of exponentially damped sinusoids and pole-zero modeling in noise , 1982 .

[3]  F. Yarman-Vural Enhancement of speech in additive, locally stationary and colored noise, using linear prediction , 1990 .

[4]  Georges Bienvenu,et al.  Adaptivity to background noise spatial coherence for high resolution passive methods , 1980, ICASSP.

[5]  Lars Kai Hansen,et al.  Optimization of recurrent neural networks for time series modeling , 1997 .

[6]  C. C. Paige Error analysis of some techniques for updating orthogonal decompositions , 1980 .

[7]  R. Kumaresan,et al.  Data adaptive signal estimation by singular value decomposition of a data matrix , 1982, Proceedings of the IEEE.

[8]  S. Kay Noise compensation for autoregressive spectral estimates , 1980 .

[9]  Søren Holdt Jensen,et al.  FIR filter representations of reduced-rank noise reduction , 1998, IEEE Trans. Signal Process..

[10]  M. F. Griffin,et al.  Minimum-norm updating with the rank-revealing URV decomposition , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[11]  H. Zha,et al.  A tree of generalizations of the ordinary singular value decomposition , 1991 .

[12]  Barry D. Van Veen An analysis of several partially adaptive beamformer designs , 1989, IEEE Trans. Acoust. Speech Signal Process..

[13]  A.V. Oppenheim,et al.  Enhancement and bandwidth compression of noisy speech , 1979, Proceedings of the IEEE.

[14]  John H. L. Hansen,et al.  Constrained iterative speech enhancement with application to speech recognition , 1991, IEEE Trans. Signal Process..

[15]  George Carayannis,et al.  Physical interpretation of signal reconstruction from reduced rank matrices , 1991, IEEE Trans. Signal Process..

[16]  Jan Kybic,et al.  Extended spectral subtraction , 1996, 1996 8th European Signal Processing Conference (EUSIPCO 1996).

[17]  Ricardo D. Fierro,et al.  Perturbation Analysis for Two-Sided (or Complete) Orthogonal Decompositions , 1996, SIAM J. Matrix Anal. Appl..

[18]  Helle Mølgaard Sommer,et al.  Variability in microbiological degradation experiments, analysis and case study , 1997 .

[19]  Stanley C. Eisenstat,et al.  Downdating the Singular Value Decomposition , 1995, SIAM J. Matrix Anal. Appl..

[20]  Haesun Park,et al.  Downdating the Rank-Revealing URV Decomposition , 1995, SIAM J. Matrix Anal. Appl..

[21]  G. Stewart The Efficient Generation of Random Orthogonal Matrices with an Application to Condition Estimators , 1980 .

[22]  Morten Bach Lauritsen,et al.  Delta-Domain Predictive Control and Identification for Control , 1997 .

[23]  G. Stewart Error analysis of QR updating with exponential windowing , 1992 .

[24]  Rune A Thorsen,et al.  Restoration of hand function in tetraplegics using myoelectrically controlled functional electrical| stimulation of the controlling muscle , 1997 .

[25]  Henrik Sahlin,et al.  Signal Separation Applied to Real World Signals , 1997 .

[26]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[27]  Bart De Moor,et al.  Total least squares for affinely structured matrices and the noisy realization problem , 1994, IEEE Trans. Signal Process..

[28]  Jae Lim,et al.  Evaluation of a correlation subtraction method for enhancing speech degraded by additive white noise , 1978 .

[29]  Peter Ulrik Vallø Skands,et al.  Quantitative methods for the analysis of electron microscope images , 1996 .

[30]  Yves Grenier A microphone array for car environments , 1993, Speech Commun..

[31]  N. Higham The Test Matrix Toolbox for MATLAB , 1993 .

[32]  Franklin T. Luk,et al.  A new matrix decomposition for signal processing , 1994, Autom..

[33]  S. Boll,et al.  Suppression of acoustic noise in speech using spectral subtraction , 1979 .

[34]  G. Stewart Updating a Rank-Revealing ULV Decomposition , 1993, SIAM J. Matrix Anal. Appl..

[35]  Alan Edelman,et al.  Scaling for orthogonality , 1993, IEEE Trans. Signal Process..

[36]  Per Christian Hansen,et al.  Noise reduction of speech signals using the rank-revealing ULLV decomposition , 1996, 1996 8th European Signal Processing Conference (EUSIPCO 1996).

[37]  Alan V. Oppenheim,et al.  All-pole modeling of degraded speech , 1978 .

[38]  Nicholas J. Higham,et al.  INVERSE PROBLEMS NEWSLETTER , 1991 .

[39]  Per Christian Hansen,et al.  Ulv-Based Signal Subspace Methods For Speech Enhancement , 1997 .

[40]  John K. Thomas,et al.  The probability of a subspace swap in the SVD , 1995, IEEE Trans. Signal Process..

[41]  Karsten Hartelius,et al.  Analysis of irregularly distributed points , 1996 .

[42]  Neviano Dal Degan,et al.  Acoustic noise analysis and speech enhancement techniques for mobile radio applications , 1988 .

[43]  J. Flanagan Speech Analysis, Synthesis and Perception , 1971 .

[44]  Bart De Moor,et al.  The singular value decomposition and long and short spaces of noisy matrices , 1993, IEEE Trans. Signal Process..

[45]  Eric Moulines,et al.  Subspace methods for the blind identification of multichannel FIR filters , 1995, IEEE Trans. Signal Process..

[46]  Peter Vary,et al.  Noise suppression by spectral magnitude estimation —mechanism and theoretical limits— , 1985 .

[47]  A. W. M. van den Enden,et al.  Discrete Time Signal Processing , 1989 .

[48]  Theodore S. Rappaport,et al.  Evaluation of several adaptive algorithms for canceling acoustic noise in mobile radio environments , 1991, [1991 Proceedings] 41st IEEE Vehicular Technology Conference.

[49]  L. J. Griffiths,et al.  An alternative approach to linearly constrained adaptive beamforming , 1982 .

[50]  R. McAulay,et al.  Speech enhancement using a soft-decision noise suppression filter , 1980 .

[51]  Jens Christian Jensen,et al.  Teoretiske og eksperimentelle dynamiske undersøgelser af jernbanekøretøjer , 1995 .

[52]  Kaj Madsen,et al.  Automatic Validation of Numerical Solutions , 1997 .

[53]  James A. Cadzow,et al.  Signal enhancement-a composite property mapping algorithm , 1988, IEEE Trans. Acoust. Speech Signal Process..

[54]  Joos Vandewalle,et al.  A Singular Value Decomposition Updating Algorithm for Subspace Tracking , 1992, SIAM J. Matrix Anal. Appl..

[55]  Thomas F. Quatieri,et al.  Phase coherence in speech reconstruction for enhancement and coding applications , 1989, International Conference on Acoustics, Speech, and Signal Processing,.

[56]  John H. L. Hansen,et al.  Discrete-Time Processing of Speech Signals , 1993 .

[57]  G. W. Stewart,et al.  An updating algorithm for subspace tracking , 1992, IEEE Trans. Signal Process..

[58]  James H. McClellan,et al.  Exact equivalence of the Steiglitz-McBride iteration and IQML , 1991, IEEE Trans. Signal Process..

[59]  C. Eckart,et al.  The approximation of one matrix by another of lower rank , 1936 .

[60]  Damir Čemerin,et al.  IV , 2011 .

[61]  Per Christian Hansen,et al.  Accuracy of TSVD solutions computed from rank-revealing decompositions , 1995 .

[62]  Nicholas J. Highham A survey of condition number estimation for triangular matrices , 1987 .

[63]  Lars Henrik Hansen,et al.  Stochastic modelling of central heating systems , 1997 .

[64]  Louis L. Scharf,et al.  The SVD and reduced rank signal processing , 1991, Signal Process..

[65]  Anders Rosholm,et al.  Statistical methods for segmentation and classification of images , 1997 .

[66]  Roy Mathias Analysis of Algorithms for Orthogonalizing Products of Unitary Matrices , 1996 .

[67]  C. Loan Generalizing the Singular Value Decomposition , 1976 .

[68]  Rajesh Sharma,et al.  Large modular structures for adaptive beamforming and the Gram-Schmidt preprocessor , 1994, IEEE Trans. Signal Process..

[69]  Chunyan Wang,et al.  Stochastic differential equations and a biological system , 1994 .

[70]  J. Makhoul On the eigenvectors of symmetric Toeplitz matrices , 1981 .

[71]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[72]  Niklas Kohl,et al.  Exact methods for time constrained routing and related scheduling problems , 1995 .

[73]  Søren Holdt Jensen,et al.  Reduction of broad-band noise in speech by truncated QSVD , 1995, IEEE Trans. Speech Audio Process..

[74]  Lang Tong,et al.  Fast blind equalization via antenna arrays , 1993, 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[75]  Kevin Buckley,et al.  Spatial/Spectral filtering with linearly constrained minimum variance beamformers , 1987, IEEE Trans. Acoust. Speech Signal Process..

[76]  Jae S. Lim,et al.  The unimportance of phase in speech enhancement , 1982 .

[77]  Xin Ma,et al.  Adaptive Extremum Control and Wind Turbine Control , 1997 .

[78]  O. L. Frost,et al.  An algorithm for linearly constrained adaptive array processing , 1972 .

[79]  G. W. Stewart On the stability of sequential updates and downdates , 1995, IEEE Trans. Signal Process..

[80]  Russell J. Niederjohn,et al.  An investigation of several frequency-domain processing methods for enhancing the intelligibility of speech in wideband random noise , 1978, ICASSP.

[81]  R. Kumaresan,et al.  Estimation of frequencies of multiple sinusoids: Making linear prediction perform like maximum likelihood , 1982, Proceedings of the IEEE.

[82]  G. W. STEWARTt ON THE EARLY HISTORY OF THE SINGULAR VALUE DECOMPOSITION * , 2022 .

[83]  Ephraim Speech enhancement using a minimum mean square error short-time spectral amplitude estimator , 1984 .

[84]  Biing-Hwang Juang,et al.  On the application of hidden Markov models for enhancing noisy speech , 1989, IEEE Trans. Acoust. Speech Signal Process..

[85]  A. K. Cline,et al.  Generalizing the LINPACK Condition Estimator , 1981 .

[86]  Thomas F. Quatieri,et al.  Noise reduction using a soft-decision sine-wave vector quantizer , 1990, International Conference on Acoustics, Speech, and Signal Processing.

[87]  Ramdas Kumaresan,et al.  An algorithm for pole-zero modeling and spectral analysis , 1986, IEEE Trans. Acoust. Speech Signal Process..

[88]  Louis L. Scharf,et al.  Rank reduction for modeling stationary signals , 1987, IEEE Trans. Acoust. Speech Signal Process..

[89]  Ralph Otto Schmidt,et al.  A signal subspace approach to multiple emitter location and spectral estimation , 1981 .

[90]  R. Wohlford,et al.  Event driven speech enhancement , 1983, ICASSP.

[91]  C. Loan Computing the CS and the generalized singular value decompositions , 1985 .

[92]  M. F. Griffin,et al.  Direction-of-arrival estimation using the rank-revealing URV decomposition , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[93]  Donald W. Tufts,et al.  Estimation of a signal waveform from noisy data using low-rank approximation to a data matrix , 1993, IEEE Trans. Signal Process..

[94]  J. S. Bird,et al.  Speech enhancement for mobile telephony , 1990 .

[95]  Jang-Gyu Lee,et al.  On updating the singular value decomposition , 1996, Proceedings of International Conference on Communication Technology. ICCT '96.

[96]  Sanzheng Qiao Computing the ULLV decomposition , 1994, Optics & Photonics.

[97]  Régine Le Bouquin-Jeannès,et al.  Speech enhancement using a wiener filtering under signal presence uncertainty , 1996, 1996 8th European Signal Processing Conference (EUSIPCO 1996).

[98]  Allan Aasbjerg Nielsen,et al.  Analysis of Regularly and Irregularly Sampled Spatial, Multivariate, and Multi-temporal Data , 1994 .

[99]  Rafik Goubran,et al.  Noise cancellation using parallel adaptive filters , 1992 .

[100]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[101]  C. Bendtsen,et al.  Parallel Numerical Algorithms for the Solution of Systems of Ordinary Differential Equations , 1996 .

[102]  Pascal Scalart,et al.  On speech enhancement algorithms based on MMSE estimation , 1996, 1996 8th European Signal Processing Conference (EUSIPCO 1996).

[103]  Lang Tong,et al.  Blind identification and equalization of multipath channels , 1992, [Conference Record] SUPERCOMM/ICC '92 Discovering a New World of Communications.

[104]  Monson H. Hayes,et al.  Block Toeplitz approximation , 1988 .

[105]  Allan T. Andersen Modelling of packet traffic with matrix analytic methods , 1995 .

[106]  G. Stewart,et al.  Reorthogonalization and stable algorithms for updating the Gram-Schmidt QR factorization , 1976 .

[107]  Knut Conradsen,et al.  Automated Determination of Crystal Orientations from Electron Backscattering Patterns , 1994 .

[108]  George Carayannis,et al.  Speech enhancement from noise: A regenerative approach , 1991, Speech Commun..

[109]  Vishu R. Viswanathan,et al.  Hands-free voice communication in an automobile with a microphone array , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[110]  S. Haykin,et al.  Adaptive Filter Theory , 1986 .

[111]  Susanne M. Balle Distributed-memory matrix computations , 1995 .

[112]  Anca Daniela Hansen,et al.  Predictive control and identification: Applications to steering dynamics , 1996 .

[113]  Yariv Ephraim,et al.  A signal subspace approach for speech enhancement , 1995, IEEE Trans. Speech Audio Process..

[114]  Sabine Van Huffel,et al.  Enhanced resolution based on minimum variance estimation and exponential data modeling , 1993, Signal Process..

[115]  Lloyd J. Griffiths,et al.  Quiescent pattern control in linearly constrained adaptive arrays , 1987, IEEE Trans. Acoust. Speech Signal Process..

[116]  Lloyd J. Griffiths,et al.  Broad-band signal-subspace spatial-spectrum (BASS-ALE) estimation , 1988, IEEE Trans. Acoust. Speech Signal Process..

[117]  James R. Bunch,et al.  Bounding the Subspaces from Rank Revealing Two-Sided Orthogonal Decompositions , 1995, SIAM J. Matrix Anal. Appl..

[118]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[119]  G. Stewart,et al.  A block QR algorithm and the singular value decomposition , 1993 .

[120]  C. Lawson,et al.  Extensions and applications of the Householder algorithm for solving linear least squares problems , 1969 .

[121]  C. A. Berenstein,et al.  Exact deconvolution for multiple convolution operators-an overview, plus performance characterizations for imaging sensors , 1990, Proc. IEEE.

[122]  Kim Ø. Rasmussen,et al.  Nonlinear and stochastic dynamics of coherent structures , 1997 .