Wedgelets: nearly minimax estimation of edges

We study a simple \Horizon Model" for the problem of recovering an image from noisy data; in this model the image has an edge with fi-Holder regularity. Adopting the viewpoint of computational harmonic analysis, we develop an overcomplete collection of atoms called wedgelets, dyadically organized indicator functions with a variety of locations, scales, and orientations. The wedgelet representation provides nearly-optimal representations of objects in the Horizon model, as measured by minimax description length. We show how to rapidly compute a wedgelet approximation to noisy data by flnding a special edgelet-decorated recursive partition which minimizes a complexity-penalized sum of squares. This estimate, using su-cient sub-pixel resolution, achieves nearly the minimax mean-squared error in the Horizon Model. In fact, the method is adaptive in the sense that it achieves nearly the minimax risk for any value of the unknown degree of regularity of the Horizon, 1• fi• 2. Wedgelet analysis and de-noising may be used successfully outside the Horizon model. We study images modelled as indicators of star-shaped sets with smooth bound- aries and show that complexity-penalized wedgelet partitioning achieves nearly the minimax risk in that setting also.

[1]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[2]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  A. Korostelev On Minimax Estimation of a Discontinuous Signal , 1988 .

[4]  李幼升,et al.  Ph , 1989 .

[5]  Ronald R. Coifman,et al.  Wavelet analysis and signal processing , 1990 .

[6]  Peter W. Jones Rectifiable sets and the Traveling Salesman Problem , 1990 .

[7]  G. Weiss,et al.  Littlewood-Paley Theory and the Study of Function Spaces , 1991 .

[8]  Andrew R. Barron,et al.  Minimum complexity density estimation , 1991, IEEE Trans. Inf. Theory.

[9]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[10]  Ronald R. Coifman,et al.  Entropy-based algorithms for best basis selection , 1992, IEEE Trans. Inf. Theory.

[11]  S. Semmes,et al.  Analysis of and on uniformly rectifiable sets , 1993 .

[12]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[13]  D. Donoho Unconditional Bases Are Optimal Bases for Data Compression and for Statistical Estimation , 1993 .

[14]  George G. Lorentz,et al.  Constructive Approximation , 1993, Grundlehren der mathematischen Wissenschaften.

[15]  A. Tsybakov,et al.  Minimax theory of image reconstruction , 1993 .

[16]  H. Müller,et al.  Maximin estimation of multidimensional boundaries , 1994 .

[17]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[18]  D. L. Donoho,et al.  Ideal spacial adaptation via wavelet shrinkage , 1994 .

[19]  M. Victor Wickerhauser,et al.  Adapted wavelet analysis from theory to software , 1994 .

[20]  I. Johnstone,et al.  Wavelet Shrinkage: Asymptopia? , 1995 .

[21]  D. Donoho Abstract Statistical Estimation and Modern Harmonic Analysis , 1995 .

[22]  D. Donoho Unconditional Bases and Bit-Level Compression , 1996 .

[23]  L. Villemoes,et al.  A Fast Algorithm for Adapted Time–Frequency Tilings , 1996 .

[24]  I. Johnstone,et al.  Density estimation by wavelet thresholding , 1996 .

[25]  D. Donoho CART AND BEST-ORTHO-BASIS: A CONNECTION' , 1997 .

[26]  P. Massart,et al.  From Model Selection to Adaptive Estimation , 1997 .

[27]  I. Johnstone,et al.  Minimax estimation via wavelet shrinkage , 1998 .

[28]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[29]  S. Mallat A wavelet tour of signal processing , 1998 .

[30]  Nicholas N. Bennett Fast Algorithm for Best Anisotropic Walsh Bases and Relatives , 2000 .

[31]  Refractor Vision , 2000, The Lancet.