Testing gravity with cold-atom clocks in space

Atomic Clock Ensemble in Space (ACES) is a mission designed to test Einstein’s theory of General Relativity from the International Space Station (ISS). A primary frequency standard based on laser cooled caesium atoms (PHARAO) and an active H-maser (SHM) generate a clock signal that is distributed to a network of clocks on the ground to perform space-to-ground comparison. With a fractional frequency stability of 1 × 10−16 after 10 days of integration time and an accuracy of 1 – 2 × 10−16, ACES will provide an absolute measurement of the gravitational redshift, it will search for time variations of fundamental constant, and perform Standard Model Extension (SME) tests. The ACES payload is currently completing its qualification tests before flying. The mission status, the latest test results, and the ACES performance for testing General Relativity are discussed.

[1]  Josef Blazej,et al.  Measurement of the optical to electrical detection delay in the detector for ground-to-space laser time transfer , 2011 .

[2]  Christoph Günther,et al.  Test of the Gravitational Redshift with Galileo Satellites in an Eccentric Orbit. , 2018, Physical review letters.

[3]  C. Le Poncin-Lafitte,et al.  Gravitational redshift test with the future ACES mission , 2019, Classical and Quantum Gravity.

[4]  Robert F. C. Vessot Clocks and spaceborne tests of relativistic gravitation , 1989 .

[5]  Manoj Das,et al.  Frequency ratio of Yb and Sr clocks with 5 × 10 −17 uncertainty at 150 seconds averaging time , 2016 .

[6]  D. Massonnet,et al.  PHARAO laser source flight model: design and performances. , 2015, The Review of scientific instruments.

[7]  Oliver Montenbruck,et al.  The ACES mission: System development and test status , 2011 .

[8]  D. Wineland,et al.  ^{27}Al^{+} Quantum-Logic Clock with a Systematic Uncertainty below 10^{-18}. , 2019, Physical review letters.

[9]  Josef Blazej,et al.  Note: Space qualified solid state photon counting detector with reduced detection delay temperature drift. , 2018, The Review of scientific instruments.

[10]  N Quintin,et al.  A clock network for geodesy and fundamental science , 2016, Nature communications.

[11]  N Quintin,et al.  Test of Special Relativity Using a Fiber Network of Optical Clocks. , 2017, Physical review letters.

[12]  Fritz Riehle,et al.  Optical clock networks , 2017, Nature Photonics.

[13]  Josef Blazej,et al.  Identification and calibration of one-way delays in satellite laser ranging systems , 2017 .

[14]  M. W. Levine,et al.  A test of the equivalence principle using a space-borne clock , 1979 .

[15]  Z. Altamimi,et al.  ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions , 2016 .

[16]  R Prieto-Cerdeira,et al.  Gravitational Redshift Test Using Eccentric Galileo Satellites. , 2018, Physical review letters.

[17]  Jun Ye,et al.  JILA SrI optical lattice clock with uncertainty of 2.0×10−18 , 2019, Metrologia.

[18]  R. Pound,et al.  Effect of Gravity on Gamma Radiation , 1965 .

[19]  Uwe Sterr,et al.  Towards an optical clock for space: Compact, high-performance optical lattice clock based on bosonic atoms , 2018, Physical Review A.

[20]  C. Le Poncin-Lafitte,et al.  Atomic clock ensemble in space (ACES) data analysis , 2017, 1709.06491.

[21]  Chu,et al.  Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure. , 1985, Physical review letters.

[22]  M. Saccoccio,et al.  Design of the cold atom PHARAO space clock and initial test results , 2006 .

[23]  R. Decher,et al.  Test of relativistic gravitation with a space-borne hydrogen maser , 1980 .

[24]  R. Pound,et al.  Gravitational Red-Shift in Nuclear Resonance , 1959 .

[25]  M. Pospelov,et al.  Hunting for topological dark matter with atomic clocks , 2013, Nature Physics.

[26]  P. Wolf,et al.  Test of the gravitational redshift with stable clocks in eccentric orbits: application to Galileo satellites 5 and 6 , 2015, 1508.06159.

[27]  Anne Amy-Klein,et al.  Reciprocity of propagation in optical fiber links demonstrated to 10-21. , 2019, Optics express.

[28]  T. Hänsch,et al.  A 920-Kilometer Optical Fiber Link for Frequency Metrology at the 19th Decimal Place , 2012, Science.

[29]  O. Grosjean,et al.  Magnetic shielding of the cold atom space clock PHARAO , 2014 .

[30]  N. K. Pavlis,et al.  The development and evaluation of the Earth Gravitational Model 2008 (EGM2008) , 2012 .

[31]  M. Schioppo,et al.  Atomic clock performance beyond the geodetic limit , 2018, 1807.11282.

[32]  A. Ludlow,et al.  Atomic clock performance enabling geodesy below the centimetre level , 2018, Nature.

[33]  Kurt Gibble,et al.  Microwave lensing frequency shift of the PHARAO laser-cooled microgravity atomic clock , 2016 .

[34]  R. Pound,et al.  Apparent Weight of Photons , 1960 .

[35]  M Fujieda,et al.  Direct comparison of optical lattice clocks with an intercontinental baseline of 9000 km. , 2014, Optics letters.

[36]  U. Hugentobler,et al.  Ground-based demonstration of the European Laser Timing (ELT) experiment , 2010, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[37]  Olivier Grosjean,et al.  Hysteresis prediction inside magnetic shields and application. , 2014, The Review of scientific instruments.

[38]  Patrick Gill,et al.  The CIPM list of recommended frequency standard values: guidelines and procedures , 2018 .

[39]  Josef Blazej,et al.  Note: Space qualified photon counting detector for laser time transfer with picosecond precision and stability. , 2016, The Review of scientific instruments.

[40]  Flavien Mercier,et al.  Orbit determination for next generation space clocks , 2007, 0708.2387.

[41]  P. Rosenbusch,et al.  First international comparison of fountain primary frequency standards via a long distance optical fiber link , 2017, 1703.02892.

[42]  C. Will The Confrontation between General Relativity and Experiment , 1980, Living reviews in relativity.

[43]  Jean-Yves Richard,et al.  The IERS EOP 14C04 solution for Earth orientation parameters consistent with ITRF 2014 , 2019, Journal of Geodesy.

[44]  P. K. Seidelmann,et al.  The IAU 2000 Resolutions for Astrometry, Celestial Mechanics, and Metrology in the Relativistic Framework: Explanatory Supplement , 2003, astro-ph/0303376.

[45]  Luigi Cacciapuoti,et al.  Space clocks and fundamental tests: The ACES experiment , 2009 .

[46]  R. Pound,et al.  Resonant Absorption of the 14.4-kevγRay from 0.10-μsecFe57 , 1959 .

[47]  Davide Calonico,et al.  Geodesy and metrology with a transportable optical clock , 2018 .