Testing gravity with cold-atom clocks in space
暂无分享,去创建一个
Shuo Liu | Ulrich Schreiber | Didier Massonnet | Theo Schwall | Omar Sy | Achim Helm | Luigi Cacciapuoti | Pascal Rochat | Christophe Le Poncin-Lafitte | Michele Armano | Johannes Kehrer | Peter Wolf | Christine Guerlin | Christophe Salomon | Anja Schlicht | Didier Goujon | Silvio Koller | P. Laurent | Rudolf Much | Marc Peter Hess | Thomas Niedermaier | Francois Xavier Esnault | Jacques Pittet | Wolfgang Schaefer | Ivan Prochazka | Pacôme Delva | Marc Lilley | Etienne Savalle | F. Meynadier | D. Massonnet | U. Schreiber | C. Le Poncin-Lafitte | C. Salomon | P. Laurent | I. Procházka | M. Armano | L. Cacciapuoti | R. Much | M. Lilley | C. Guerlin | A. Helm | P. Wolf | A. Schlicht | F. Esnault | F. Meynadier | P. Rochat | P. Delva | Thomas Niedermaier | S. Koller | Shuo Liu | O. Sy | M. Hess | J. Kehrer | E. Savalle | D. Goujon | J. Pittet | W. Schaefer | T. Schwall | Jacques Pittet | Michele Armano
[1] Josef Blazej,et al. Measurement of the optical to electrical detection delay in the detector for ground-to-space laser time transfer , 2011 .
[2] Christoph Günther,et al. Test of the Gravitational Redshift with Galileo Satellites in an Eccentric Orbit. , 2018, Physical review letters.
[3] C. Le Poncin-Lafitte,et al. Gravitational redshift test with the future ACES mission , 2019, Classical and Quantum Gravity.
[4] Robert F. C. Vessot. Clocks and spaceborne tests of relativistic gravitation , 1989 .
[5] Manoj Das,et al. Frequency ratio of Yb and Sr clocks with 5 × 10 −17 uncertainty at 150 seconds averaging time , 2016 .
[6] D. Massonnet,et al. PHARAO laser source flight model: design and performances. , 2015, The Review of scientific instruments.
[7] Oliver Montenbruck,et al. The ACES mission: System development and test status , 2011 .
[8] D. Wineland,et al. ^{27}Al^{+} Quantum-Logic Clock with a Systematic Uncertainty below 10^{-18}. , 2019, Physical review letters.
[9] Josef Blazej,et al. Note: Space qualified solid state photon counting detector with reduced detection delay temperature drift. , 2018, The Review of scientific instruments.
[10] N Quintin,et al. A clock network for geodesy and fundamental science , 2016, Nature communications.
[11] N Quintin,et al. Test of Special Relativity Using a Fiber Network of Optical Clocks. , 2017, Physical review letters.
[12] Fritz Riehle,et al. Optical clock networks , 2017, Nature Photonics.
[13] Josef Blazej,et al. Identification and calibration of one-way delays in satellite laser ranging systems , 2017 .
[14] M. W. Levine,et al. A test of the equivalence principle using a space-borne clock , 1979 .
[15] Z. Altamimi,et al. ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions , 2016 .
[16] R Prieto-Cerdeira,et al. Gravitational Redshift Test Using Eccentric Galileo Satellites. , 2018, Physical review letters.
[17] Jun Ye,et al. JILA SrI optical lattice clock with uncertainty of 2.0×10−18 , 2019, Metrologia.
[18] R. Pound,et al. Effect of Gravity on Gamma Radiation , 1965 .
[19] Uwe Sterr,et al. Towards an optical clock for space: Compact, high-performance optical lattice clock based on bosonic atoms , 2018, Physical Review A.
[20] C. Le Poncin-Lafitte,et al. Atomic clock ensemble in space (ACES) data analysis , 2017, 1709.06491.
[21] Chu,et al. Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure. , 1985, Physical review letters.
[22] M. Saccoccio,et al. Design of the cold atom PHARAO space clock and initial test results , 2006 .
[23] R. Decher,et al. Test of relativistic gravitation with a space-borne hydrogen maser , 1980 .
[24] R. Pound,et al. Gravitational Red-Shift in Nuclear Resonance , 1959 .
[25] M. Pospelov,et al. Hunting for topological dark matter with atomic clocks , 2013, Nature Physics.
[26] P. Wolf,et al. Test of the gravitational redshift with stable clocks in eccentric orbits: application to Galileo satellites 5 and 6 , 2015, 1508.06159.
[27] Anne Amy-Klein,et al. Reciprocity of propagation in optical fiber links demonstrated to 10-21. , 2019, Optics express.
[28] T. Hänsch,et al. A 920-Kilometer Optical Fiber Link for Frequency Metrology at the 19th Decimal Place , 2012, Science.
[29] O. Grosjean,et al. Magnetic shielding of the cold atom space clock PHARAO , 2014 .
[30] N. K. Pavlis,et al. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008) , 2012 .
[31] M. Schioppo,et al. Atomic clock performance beyond the geodetic limit , 2018, 1807.11282.
[32] A. Ludlow,et al. Atomic clock performance enabling geodesy below the centimetre level , 2018, Nature.
[33] Kurt Gibble,et al. Microwave lensing frequency shift of the PHARAO laser-cooled microgravity atomic clock , 2016 .
[34] R. Pound,et al. Apparent Weight of Photons , 1960 .
[35] M Fujieda,et al. Direct comparison of optical lattice clocks with an intercontinental baseline of 9000 km. , 2014, Optics letters.
[36] U. Hugentobler,et al. Ground-based demonstration of the European Laser Timing (ELT) experiment , 2010, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.
[37] Olivier Grosjean,et al. Hysteresis prediction inside magnetic shields and application. , 2014, The Review of scientific instruments.
[38] Patrick Gill,et al. The CIPM list of recommended frequency standard values: guidelines and procedures , 2018 .
[39] Josef Blazej,et al. Note: Space qualified photon counting detector for laser time transfer with picosecond precision and stability. , 2016, The Review of scientific instruments.
[40] Flavien Mercier,et al. Orbit determination for next generation space clocks , 2007, 0708.2387.
[41] P. Rosenbusch,et al. First international comparison of fountain primary frequency standards via a long distance optical fiber link , 2017, 1703.02892.
[42] C. Will. The Confrontation between General Relativity and Experiment , 1980, Living reviews in relativity.
[43] Jean-Yves Richard,et al. The IERS EOP 14C04 solution for Earth orientation parameters consistent with ITRF 2014 , 2019, Journal of Geodesy.
[44] P. K. Seidelmann,et al. The IAU 2000 Resolutions for Astrometry, Celestial Mechanics, and Metrology in the Relativistic Framework: Explanatory Supplement , 2003, astro-ph/0303376.
[45] Luigi Cacciapuoti,et al. Space clocks and fundamental tests: The ACES experiment , 2009 .
[46] R. Pound,et al. Resonant Absorption of the 14.4-kevγRay from 0.10-μsecFe57 , 1959 .
[47] Davide Calonico,et al. Geodesy and metrology with a transportable optical clock , 2018 .