The de Bruijn–Erdős theorem for hypergraphs

Fix integers n ≥ r ≥ 2. A clique partition of $${{[n] \choose r}}$$ is a collection of proper subsets $${A_1, A_2, \ldots, A_t \subset [n]}$$ such that $${\bigcup_i{A_i \choose r}}$$ is a partition of $${{[n]\choose r}}$$ . Let cp(n, r) denote the minimum size of a clique partition of $${{[n] \choose r}}$$ . A classical theorem of de Bruijn and Erdős states that cp(n, 2) = n. In this paper we study cp(n, r), and show in general that for each fixed r ≥ 3,$${\rm cp}(n, r) \geq (1 + o(1))n^{r/2} \quad \quad {\rm as} \, \, n \rightarrow \infty.$$We conjecture cp(n, r) = (1 + o(1))nr/2. This conjecture has already been verified (in a very strong sense) for r = 3 by Hartman–Mullin–Stinson. We give further evidence of this conjecture by constructing, for each r ≥ 4, a family of (1 + o(1))nr/2 subsets of [n] with the following property: no two r-sets of [n] are covered more than once and all but o(nr) of the r-sets of [n] are covered. We also give an absolute lower bound $${{\rm cp}(n, r) \geq {n \choose r}/{q + r - 1 \choose r}}$$ when n = q2 + q + r − 1, and for each r characterize the finitely many configurations achieving equality with the lower bound. Finally we note the connection of cp(n, r) to extremal graph theory, and determine some new asymptotically sharp bounds for the Zarankiewicz problem.

[1]  Zoltán Füredi,et al.  New Asymptotics for Bipartite Turán Numbers , 1996, J. Comb. Theory, Ser. A.

[2]  Jim Totten Classification of restricted linear spaces , 1976 .

[3]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[4]  Peter Wild,et al.  FINITE PROJECTIVE SPACES OF THREE DIMENSIONS (Oxford Mathematical Monographs) , 1987 .

[5]  Paul Erdös,et al.  Finite linear spaces and projective planes , 1983, Discret. Math..

[6]  Noga Alon,et al.  Norm-Graphs: Variations and Applications , 1999, J. Comb. Theory, Ser. B.

[7]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[8]  Richard M. Wilson,et al.  On $t$-designs , 1975 .

[9]  D. R. Hughes,et al.  On Finite Inversive Planes , 1965 .

[10]  R. Jackson Inequalities , 2007, Algebra for Parents.

[11]  J. Thas The affine planeAG(2,q),q odd, has a unique one point extension , 1994 .

[12]  E. Witt über Steinersche Systeme , 1937 .

[13]  J. Tits Ovoßdes et Groupes de Suzuki , 1962 .

[14]  Ronald L. Graham,et al.  On the addressing problem for loop switching , 1971 .

[15]  W. Benz,et al.  Vorlesungen über Geometrie der Algebren , 1973 .

[16]  Jacques Tits Une Propriété Caractéristique des Ovoïdes Associés aux Groupes de Suzuki , 1966 .

[17]  J. Hirschfeld Projective Geometries Over Finite Fields , 1980 .

[18]  P. Dembowski,et al.  Inversive planes of even order , 1963 .

[19]  Paul Erdös,et al.  On 2-Designs , 1985, J. Comb. Theory, Ser. A.

[20]  Walter. Benz Vorlesungen über Geometrie der Algebren : Geometrien von Möbius, Laguerre-Lie, Minkowski in einheitlicher und grundlagengeometrischer Behandlung , 1973 .

[21]  Aart Blokhuis,et al.  Finite Geometries , 2018, Des. Codes Cryptogr..

[22]  J. H. Lint,et al.  Designs, graphs, codes, and their links , 1991 .

[23]  Noga Alon Decomposition of the completer-graph into completer-partiter-graphs , 1986, Graphs Comb..

[24]  Jacques Verstraëte,et al.  On decompositions of complete hypergraphs , 2009, J. Comb. Theory, Ser. A.

[25]  J. B. Wilker,et al.  Inversive geometry and the hexlet , 1981 .

[26]  C. Lam The Search for a Finite Projective Plane of Order 10 , 2005 .

[27]  P. Erdtds On a Combinatorial Problem Iii , 1968 .

[28]  V. Sós,et al.  On a problem of K. Zarankiewicz , 1954 .

[29]  R. Fisher An examination of the different possible solutions of a problem in incomplete blocks. , 1940 .

[30]  Douglas R. Stinson,et al.  Exact Covering Configurations and Steiner Systems , 1982 .

[31]  B. Segre Ovals In a Finite Projective Plane , 1955, Canadian Journal of Mathematics.

[32]  J. Hirschfeld Finite projective spaces of three dimensions , 1986 .

[33]  Joel C. Fowler A short proof of Totten's classification of restricted linear spaces , 1984 .

[34]  Sundar Vishwanathan,et al.  A counting proof of the Graham-Pollak Theorem , 2010, Discret. Math..