Molecular understanding of sulphuric acid–amine particle nucleation in the atmosphere

[1]  T. Petäjä,et al.  Performance of diethylene glycol-based particle counters in the sub-3 nm size range , 2013 .

[2]  I. Riipinen,et al.  Direct Observations of Atmospheric Aerosol Nucleation , 2013, Science.

[3]  Claus J. Nielsen,et al.  Atmospheric Chemistry and Environmental Impact of the Use of Amines in Carbon Capture and Storage (CCS) , 2012 .

[4]  Jingkun Jiang,et al.  Acid–base chemical reaction model for nucleation rates in the polluted atmospheric boundary layer , 2012, Proceedings of the National Academy of Sciences.

[5]  U. Baltensperger,et al.  Dimethylamine and ammonia measurements with ion chromatography during the CLOUD4 campaign , 2012 .

[6]  Tong Lee,et al.  The changing impact of El Niño on US winter temperatures , 2012 .

[7]  Shan‐Hu Lee,et al.  Chemical ionisation mass spectrometry for the measurement of atmospheric amines , 2012 .

[8]  D. R. Hanson,et al.  Sulfuric acid nucleation: power dependencies, variation with relative humidity, and effect of bases , 2012 .

[9]  J. Curtius,et al.  Calibration of a chemical ionization mass spectrometer for the measurement of gaseous sulfuric acid. , 2012, The journal of physical chemistry. A.

[10]  R. McGraw,et al.  Effects of amines on formation of sub‐3 nm particles and their subsequent growth , 2012 .

[11]  H. Vehkamäki,et al.  Amine substitution into sulfuric acid – ammonia clusters , 2011 .

[12]  J. Smith,et al.  Observation of neutral sulfuric acid-amine containing clusters in laboratory and ambient measurements , 2011 .

[13]  M. McGrath,et al.  From quantum chemical formation free energies to evaporation rates , 2011 .

[14]  D. R. Hanson,et al.  Ambient pressure proton transfer mass spectrometry: detection of amines and ammonia. , 2011, Environmental science & technology.

[15]  Matthew J. McGrath,et al.  Atmospheric Cluster Dynamics Code: a flexible method for solution of the birth-death equations , 2011 .

[16]  K. Prather,et al.  Measurements of aerosol chemistry during new particle formation events at a remote rural mountain site. , 2011, Environmental science & technology.

[17]  Jorge Lima,et al.  Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation , 2011, Nature.

[18]  T. Petäjä,et al.  Experimental observation of strongly bound dimers of sulfuric acid: application to nucleation in the atmosphere. , 2011, Physical review letters.

[19]  T. Petäjä,et al.  Particle Size Magnifier for Nano-CN Detection , 2011 .

[20]  T. Petäjä,et al.  An Instrumental Comparison of Mobility and Mass Measurements of Atmospheric Small Ions , 2011 .

[21]  M. Facchini,et al.  On the roles of sulphuric acid and low-volatility organic vapours in the initial steps of atmospheric new particle formation , 2010 .

[22]  J. Curtius,et al.  Performance of a corona ion source for measurement of sulfuric acid by chemical ionization mass spectrometry , 2010 .

[23]  A. Viggiano,et al.  The effect of trimethylamine on atmospheric nucleation involving H 2 SO 4 , 2010 .

[24]  U. Rohner,et al.  A high-resolution mass spectrometer to measure atmospheric ion composition , 2010 .

[25]  T. Petäjä,et al.  Laboratory study on new particle formation from the reaction OH + SO 2 : influence of experimental conditions, H 2 O vapour, NH 3 and the amine tert-butylamine on the overall process , 2010 .

[26]  A. Hansel,et al.  High resolution PTR-TOF: Quantification and formula confirmation of VOC in real time , 2010, Journal of the American Society for Mass Spectrometry.

[27]  W. Landman Climate change 2007: the physical science basis , 2010 .

[28]  K. Sellegri,et al.  Enhancing effect of dimethylamine in sulfuric acid nucleation in the presence of water – a computational study , 2010 .

[29]  T. Petäjä,et al.  The Role of Sulfuric Acid in Atmospheric Nucleation , 2010, Science.

[30]  Mikael Ehn,et al.  Observations of aminium salts in atmospheric nanoparticles and possible climatic implications , 2010, Proceedings of the National Academy of Sciences.

[31]  G. Mann,et al.  Impact of nucleation on global CCN , 2009 .

[32]  M. Stolzenburg,et al.  Effect of Working Fluid on Sub-2 nm Particle Detection with a Laminar Flow Ultrafine Condensation Particle Counter , 2009 .

[33]  Maria Cristina Facchini,et al.  Important source of marine secondary organic aerosol from biogenic amines. , 2008, Environmental science & technology.

[34]  M. Kulmala,et al.  On the formation and growth of atmospheric nanoparticles , 2008 .

[35]  Hanna Vehkamäki,et al.  Amines are likely to enhance neutral and ion-induced sulfuric acid-water nucleation in the atmosphere more effectively than ammonia , 2008 .

[36]  C. Kuang,et al.  Dependence of nucleation rates on sulfuric acid vapor concentration in diverse atmospheric locations , 2008 .

[37]  I. Riipinen,et al.  Toward Direct Measurement of Atmospheric Nucleation , 2007, Science.

[38]  Vincent R. Gray,et al.  Climate Change 2007: The Physical Science Basis Summary for Policymakers , 2007 .

[39]  John H. Seinfeld,et al.  Secondary aerosol formation from atmospheric reactions of aliphatic amines , 2007 .

[40]  D. R. Hanson,et al.  Measurement of the thermodynamics of the hydrated dimer and trimer of sulfuric acid. , 2006, The journal of physical chemistry. A.

[41]  Meinrat O. Andreae,et al.  Strong present-day aerosol cooling implies a hot future , 2005, Nature.

[42]  K. Lehtinen,et al.  Kinetic nucleation and ions in boreal forest particle formation events , 2004 .

[43]  M. Kulmala,et al.  Analytical formulae connecting the “real” and the “apparent” nucleation rate and the nuclei number concentration for atmospheric nucleation events , 2002 .

[44]  Angela K. Wilson,et al.  Gaussian basis sets for use in correlated molecular calculations. X. The atoms aluminum through argon revisited , 2001 .

[45]  K. Hämeri,et al.  Chemical composition of aerosol during particle formation events in boreal forest , 2001 .

[46]  Christof Hättig,et al.  CC2 excitation energy calculations on large molecules using the resolution of the identity approximation , 2000 .

[47]  G. A. Petersson,et al.  A complete basis set model chemistry. VI. Use of density functional geometries and frequencies , 1999 .

[48]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[49]  J. Jönsson,et al.  Measurement of aliphatic amines in ambient air and rainwater , 1992 .

[50]  Hans W. Horn,et al.  ELECTRONIC STRUCTURE CALCULATIONS ON WORKSTATION COMPUTERS: THE PROGRAM SYSTEM TURBOMOLE , 1989 .

[51]  M. Bowers,et al.  Theory of ion‐polar molecule collisions. Comparison with experimental charge transfer reactions of rare gas ions to geometric isomers of difluorobenzene and dichloroethylene , 1973 .

[52]  A. Wexler,et al.  Atmospheric amines - Part I. A review , 2011 .

[53]  Masson-Delmotte,et al.  The Physical Science Basis , 2007 .

[54]  J. Overpeck,et al.  Climate Change 2007: The Physical Science Basis , 2007 .

[55]  Kristen Averyt,et al.  Climate change 2007: Synthesis Report. Contribution of Working Group I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Summary for Policymakers. , 2007 .