Microvoid growth and failure in the ligament between a hole and a blunt crack tip

Large deformation finite element analysis has been used to study the near crack tip growth of a cylindrical void ahead of a blunting crack. Such voids are often nucleated at elongated inclusions in specimens cut from rolled steel plates in the long transverse direction. The presence of smaller-scale voids nucleated at carbides or precipitate particles was taken into account by using Gurson's equations to describe the constitutive behavior of the material. Using the modification to Gurson's model introduced by Tvergaard and Needleman [22] we have been able to study the formation and subsequent growth of the microcrack in the ligament between the hole and the crack. Estimates for the crack tip opening displacement for fracture initiation were obtained and compared with those of a fully dense elastic-plastic material.RésuméOn a fait appel à l'analyse par éléments finis des grandes déformations pour étudier la croissance d'une cavité cylindrique située au voisinage immédiat de la pointe d'une fissure en cours d'arrondissement. De telles cavités sont souvent créées sur des inclusions allongées que l'on rencontre dans des éprouvettes prélevées en travers d'une tôle d'acier laminée. On a pris en considération la présence de cavités de plus petite taille, créées autour de carbures ou d'autres précipités, en utilisant les équations de Gurson pour décrire l'état constitutif du matériau.En recourant à la modification du modèle de Gurson, proposé par Tvergaard et Needleman, il a été possible d'étudier la formation, puis la croissance d'une microfissure dans le ligament compris entre la fissure et la cavité.On a obtenu des estimations du déplacement d'ouverture de l'extrémité de la fissure, qui correspond à l'amorçage d'une rupture, et l'on a comparé des estimations avec celles correspondant à un matériau élasto-plas-tique idéalement dense.

[1]  A. Needleman,et al.  Void Nucleation Effects in Biaxially Stretched Sheets , 1980 .

[2]  P. L. Pratt,et al.  The role of second phase particles in the ductile fracture of higher carbon steels , 1979 .

[3]  J. F. Knott,et al.  The Initiation and Propagation of Ductile Fracture in Low Strength Steels , 1976 .

[4]  Alan Needleman,et al.  Void nucleation effects on shear localization in porous plastic solids , 1982 .

[5]  V. Tvergaard Material failure by void coalescence in localized shear bands , 1982 .

[6]  J. Rice,et al.  Finite-element formulations for problems of large elastic-plastic deformation , 1975 .

[7]  D. M. Tracey,et al.  On the ductile enlargement of voids in triaxial stress fields , 1969 .

[8]  J. Knott,et al.  Observations of fibrous fracture modes in a prestrained low-alloy steel , 1976 .

[9]  F. Haessner,et al.  Influence of impurity elements on the stored energy and recrystallization temperature of rolled copper single crystals , 1976 .

[10]  M. F. Kanninen,et al.  Inelastic Behavior of Solids , 1970, Science.

[11]  J. Hancock,et al.  On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress-states , 1976 .

[12]  H. Andersson,et al.  Analysis of a model for void growth and coalescence ahead of a moving crack tip , 1977 .

[13]  R. H. Thurston,et al.  Scientific Books: Transactions of the American Society of Mechanical Engineers , 1900 .

[14]  S. Aoki,et al.  Effects of microvoids on crack blunting and initiation in ductile materials , 1984 .

[15]  G. T. Hahn,et al.  Fracture Toughness of Materials , 1972 .

[16]  R. Hill,et al.  XLVI. A theory of the plastic distortion of a polycrystalline aggregate under combined stresses. , 1951 .

[17]  J. Rice,et al.  Limits to ductility set by plastic flow localization , 1978 .

[18]  Robert M. McMeeking,et al.  Finite deformation analysis of crack-tip opening in elastic-plastic materials and implications for fracture , 1977 .

[19]  G. T. Hahn,et al.  Metallurgical factors affecting fracture toughness of aluminum alloys , 1975 .

[20]  G. Pellissier Effects of microstructure on the fracture toughness of ultrahigh-strength steels , 1968 .

[21]  J. Rice,et al.  CONDITIONS FOR THE LOCALIZATION OF DEFORMATION IN PRESSURE-SENSITIVE DILATANT MATERIALS , 1975 .

[22]  S. H. Goods,et al.  Overview No. 1: The nucleation of cavities by plastic deformation , 1979 .

[23]  T. B. Cox,et al.  An investigation of the plastic fracture of AISI 4340 and 18 Nickel-200 grade maraging steels , 1974, Metallurgical and Materials Transactions B.

[24]  A. Needleman,et al.  Analysis of the cup-cone fracture in a round tensile bar , 1984 .

[25]  J. Rice A path-independent integral and the approximate analysis of strain , 1968 .

[26]  J. Hancock,et al.  Local stress and strain fields near a spherical elastic inclusion in a plastically deforming matrix , 1984 .

[27]  Viggo Tvergaard,et al.  Influence of void nucleation on ductile shear fracture at a free surface , 1982 .

[28]  G. R. Yoder,et al.  Elastic-plastic fracture by homogeneous microvoid coalescence tearing along alternating shear planes , 1973 .

[29]  V. Tvergaard Influence of voids on shear band instabilities under plane strain conditions , 1981 .

[30]  A. L. Gurson,et al.  Porous Rigid Plastic Materials Containing Rigid Inclusions; Yield Function, Plastic Potential and Void Nucleation , 1976 .

[31]  A. Gurson Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media , 1977 .

[32]  N. Aravas,et al.  FINITE ELEMENT ANALYSIS OF VOID GROWTH NEAR A BLUNTING CRACK TIP , 1985 .