Review article: locomotion systems for ground mobile robots in unstructured environments

Abstract. The world market of mobile robotics is expected to increase substantially in the next 20 yr, surpassing the market of industrial robotics in terms of units and sales. Important fields of application are homeland security, surveillance, demining, reconnaissance in dangerous situations, and agriculture. The design of the locomotion systems of mobile robots for unstructured environments is generally complex, particularly when they are required to move on uneven or soft terrains, or to climb obstacles. This paper sets out to analyse the state-of-the-art of locomotion mechanisms for ground mobile robots, focussing on solutions for unstructured environments, in order to help designers to select the optimal solution for specific operating requirements. The three main categories of locomotion systems (wheeled – W, tracked – T and legged – L) and the four hybrid categories that can be derived by combining these main locomotion systems are discussed with reference to maximum speed, obstacle-crossing capability, step/stair climbing capability, slope climbing capability, walking capability on soft terrains, walking capability on uneven terrains, energy efficiency, mechanical complexity, control complexity and technology readiness. The current and future trends of mobile robotics are also outlined.

[1]  Shigeo Hirose,et al.  A proposal for cooperative robot "Gunryu" composed of autonomous segments , 1994, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'94).

[2]  Stefan Havlík A Modular Concept of the Robotic Vehicle for Demining Operations , 2005, Auton. Robots.

[3]  Giuseppe Quaglia,et al.  Epi.q-TG: mobile robot for surveillance , 2011, Ind. Robot.

[4]  Roland Siegwart,et al.  Comprehensive Locomotion Performance Evaluation of All-Terrain Robots , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[5]  J. Sánchez-Hermosilla,et al.  Navigation Techniques for Mobile Robots in Greenhouses , 2009 .

[6]  François Michaud,et al.  Multi-Modal Locomotion Robotic Platform Using Leg-Track-Wheel Articulations , 2005, Auton. Robots.

[7]  Gen Endo,et al.  Quadruped walking robots at Tokyo Institute of Technology , 2009, IEEE Robotics & Automation Magazine.

[8]  Robin R. Murphy,et al.  Rescue robotics for homeland security , 2004, CACM.

[9]  Randel A. Lindemann,et al.  Mars Exploration Rover mobility assembly design, test and performance , 2005, 2005 IEEE International Conference on Systems, Man and Cybernetics.

[10]  Jo Yung Wong,et al.  Theory of ground vehicles , 1978 .

[11]  Emanuela Elisa Cepolina,et al.  Power Tillers for Demining: Blast Test , 2007 .

[12]  A. Seeni,et al.  Robot Mobility Concepts for Extraterrestrial Surface Exploration , 2008, 2008 IEEE Aerospace Conference.

[13]  Kazuhiro Kosuge,et al.  Cheek to Chip: Dancing Robots and AI's Future , 2008, IEEE Intelligent Systems.

[14]  Dezhen Song,et al.  Trajectory tracking and balance stabilization control of autonomous motorcycles , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[15]  Marc H. Raibert,et al.  Legged Robots That Balance , 1986, IEEE Expert.

[16]  Marc H. Raibert,et al.  Legged robots , 1986, CACM.

[17]  J. Machado,et al.  An Overview of Legged Robots , 2006 .

[18]  H. Benjamin Brown,et al.  c ○ 2001 Kluwer Academic Publishers. Manufactured in The Netherlands. RHex: A Biologically Inspired Hexapod Runner ∗ , 2022 .

[19]  Roland Siegwart,et al.  Octopus - An Autonomous Wheeled Climbing Robot , 2002 .

[20]  Michael R. M. Jenkin,et al.  Computational principles of mobile robotics , 2000 .

[21]  Roland Siegwart,et al.  Introduction to Autonomous Mobile Robots , 2004 .

[22]  Sungchul Kang,et al.  ROBHAZ-DT3: teleoperated mobile platform with passively adaptive double-track for hazardous environment applications , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[23]  Jinwook Kim,et al.  Wheel & Track hybrid robot platform for optimal navigation in an urban environment , 2010, Proceedings of SICE Annual Conference 2010.

[24]  L. V. Willigenburg,et al.  The significance of crop co-states for receding horizon optimal control of greenhouse climate , 2002 .

[25]  Tad McGeer,et al.  Passive Dynamic Walking , 1990, Int. J. Robotics Res..

[26]  Roland Siegwart,et al.  Innovative design for wheeled locomotion in rough terrain , 2002, Robotics Auton. Syst..

[27]  Roland Siegwart,et al.  CRAB - EXPLORATION ROVER WITH ADVANCED OBSTACLE NEGOTIATION CAPABILITIES , 2006 .

[28]  Miomir Vukobratovic,et al.  Zero-Moment Point - Thirty Five Years of its Life , 2004, Int. J. Humanoid Robotics.

[29]  Takahiro Doi,et al.  Development of a Quadruped Walking Robot TITAN XI for Steep Slope Operation - Step Over Gait to Avoid Concrete Frames on Steep Slopes - , 2007, J. Robotics Mechatronics.

[30]  K. Kawabata,et al.  Control Law for Rough Terrain Robot with Leg-type Crawler , 2006, 2006 International Conference on Mechatronics and Automation.

[31]  Ian R. Manchester,et al.  Stable dynamic walking over uneven terrain , 2011, Int. J. Robotics Res..

[32]  Hideichi Nakamoto,et al.  Design of terrain adaptive versatile crawler vehicle HELIOS-VI , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[33]  Paolo Fiorini Ground mobility systems for planetary exploration , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[34]  Andreas Birk,et al.  Rescue robotics — a crucial milestone on the road to autonomous systems , 2006, Adv. Robotics.

[35]  A. Mishkin Sojourner: An Insider's View of the Mars Pathfinder Mission , 2003 .

[36]  Shuuji Kajita,et al.  Legged Robots , 2008, Springer Handbook of Robotics.

[37]  Yasuharu Kunii,et al.  Japanese lunar robotics exploration by co-operation with lander and rover , 2005 .

[38]  Roland Siegwart,et al.  Design and Implementation of an Innovative Micro-Rover , 1998 .

[39]  Johan Potgieter,et al.  Improved Mecanum Wheel Design for Omni-directional Robots , 2002 .

[40]  Gyula Mester,et al.  Motion Control of Wheeled Mobile Robots , 2006 .

[41]  H. Benjamin Brown,et al.  Experiments in Balance with a 3D One-Legged Hopping Machine , 1984 .

[42]  William R. Hamel,et al.  Elements of telerobotics necessary for waste clean up automation , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[43]  Kazuya Yoshida,et al.  Mechanical design of the Wheel-Leg hybrid mobile robot to realize a large wheel diameter , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[44]  Sebastian Thrun,et al.  Stanley: The robot that won the DARPA Grand Challenge , 2006, J. Field Robotics.

[45]  Roland Siegwart,et al.  SOLERO: Solar Powered Exploration Rover , 2002 .

[46]  Shuuji Kajita,et al.  The Human-size Humanoid Robot That Can Walk, Lie Down and Get Up , 2005, Int. J. Robotics Res..

[47]  Pietro Perona,et al.  Learning and prediction of slip from visual information , 2007, J. Field Robotics.

[48]  Daniel A. Kingsley,et al.  Parallel Complementary Strategies for Implementing Biological Principles into Mobile Robots , 2003, Int. J. Robotics Res..

[49]  S. Swindell,et al.  Experiments With a Long-Range Planetary Rover , 2003 .

[50]  José Luis Guzmán,et al.  Adaptive control for a mobile robot under slip conditions using an LMI-based approach , 2009 .

[51]  Steven Dubowsky,et al.  Mobile Robots in Rough Terrain - Estimation, Motion Planning, and Control with Application to Planetary Rovers , 2004, Springer Tracts in Advanced Robotics.

[52]  Francisco Rodríguez,et al.  Adaptive control for a mobile robot under slip conditions using an LMI-based approach , 2009, 2009 European Control Conference (ECC).

[53]  Shigeo Hirose,et al.  Proposal for cooperative robot "Gunryu" composed of autonomous segments , 1996, Robotics Auton. Syst..

[54]  Jean-Arcady Meyer,et al.  Biologically Inspired Robots , 2008, Springer Handbook of Robotics.