A Unified Model for Evolutionary Multiobjective Optimization and its Implementation in a General Purpose Software Framework: ParadisEO-MOEO

This paper gives a concise overview of evolutionary algorithms for multiobjective optimization. A substantial number of evolutionary computation methods for multiobjective problem solving has been proposed so far, and an attempt of unifying existing approaches is here presented. Based on a fine-grained decomposition and following the main issues of fitness assignment, diversity preservation and elitism, a conceptual global model is proposed and is validated by regarding a number of state-of-the-art algorithms as simple variants of the same structure. The presented model is then incorporated into a general-purpose software framework dedicated to the design and the implementation of evolutionary multiobjective optimization techniques: ParadisEO-MOEO. This package has proven its validity and flexibility by enabling the resolution of many real-world and hard multiobjective optimization problems.

[1]  Carlos A. Coello Coello,et al.  g-dominance: Reference point based dominance for multiobjective metaheuristics , 2009, Eur. J. Oper. Res..

[2]  El-Ghazali Talbi,et al.  Metaheuristics - From Design to Implementation , 2009 .

[3]  El-Ghazali Talbi,et al.  Parallel multi-objective algorithms for the molecular docking problem , 2008, 2008 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology.

[4]  Daisuke Sasaki,et al.  Multiobjective Optimization Software , 2008, Multiobjective Optimization.

[5]  Kalyanmoy Deb,et al.  A robust evolutionary framework for multi-objective optimization , 2008, GECCO '08.

[6]  El-Ghazali Talbi,et al.  New analysis of the optimization of electromagnetic shielding properties using conducting polymers and a multi‐objective approach , 2008 .

[7]  Arnaud Liefooghe,et al.  Metaheuristics and Their Hybridization to Solve the Bi-objective Ring Star Problem: a Comparative Study , 2008, 0804.3965.

[8]  El-Ghazali Talbi,et al.  Comparison of population based metaheuristics for feature selection: Application to microarray data classification , 2008, 2008 IEEE/ACS International Conference on Computer Systems and Applications.

[9]  Nicola Beume,et al.  SMS-EMOA: Multiobjective selection based on dominated hypervolume , 2007, Eur. J. Oper. Res..

[10]  El-Ghazali Talbi,et al.  Combinatorial Optimization of Stochastic Multi-objective Problems: An Application to the Flow-Shop Scheduling Problem , 2007, EMO.

[11]  El-Ghazali Talbi,et al.  ParadisEO-MOEO: A Framework for Evolutionary Multi-objective Optimization , 2007, EMO.

[12]  El-Ghazali Talbi,et al.  Designing cellular networks using a parallel hybrid metaheuristic on the computational grid , 2007, Comput. Commun..

[13]  Marc Parizeau,et al.  Genericity in Evolutionary Computation Software Tools: Principles and Case-study , 2006, Int. J. Artif. Intell. Tools.

[14]  Kalyanmoy Deb,et al.  Evaluating the -Domination Based Multi-Objective Evolutionary Algorithm for a Quick Computation of Pareto-Optimal Solutions , 2005, Evolutionary Computation.

[15]  Eckart Zitzler,et al.  Indicator-Based Selection in Multiobjective Search , 2004, PPSN.

[16]  El-Ghazali Talbi,et al.  ParadisEO: A Framework for the Reusable Design of Parallel and Distributed Metaheuristics , 2004, J. Heuristics.

[17]  Marco Laumanns,et al.  PISA: A Platform and Programming Language Independent Interface for Search Algorithms , 2003, EMO.

[18]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[19]  El-Ghazali Talbi,et al.  A Taxonomy of Hybrid Metaheuristics , 2002, J. Heuristics.

[20]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[21]  El-Ghazali Talbi,et al.  Design of multi-objective evolutionary algorithms: application to the flow-shop scheduling problem , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[22]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[23]  M. Keijzer,et al.  Evolving Objects: A General Purpose Evolutionary Computation Library , 2001, Artificial Evolution.

[24]  Tong Heng Lee,et al.  A multiobjective evolutionary algorithm toolbox for computer-aided multiobjective optimization , 2001, IEEE Trans. Syst. Man Cybern. Part B.

[25]  Martin J. Oates,et al.  The Pareto Envelope-Based Selection Algorithm for Multi-objective Optimisation , 2000, PPSN.

[26]  Marco Laumanns,et al.  A unified model for multi-objective evolutionary algorithms with elitism , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[27]  El-Ghazali Talbi,et al.  A multiobjective genetic algorithm for radio network optimization , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[28]  David W. Corne,et al.  Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.

[29]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[30]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[31]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[32]  D. Dentcheva,et al.  On several concepts for ɛ-efficiency , 1994 .

[33]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[34]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[35]  Michael P. Fourman,et al.  Compaction of Symbolic Layout Using Genetic Algorithms , 1985, ICGA.

[36]  J. D. Schaffer,et al.  Multiple Objective Optimization with Vector Evaluated Genetic Algorithms , 1985, ICGA.

[37]  Gary B. Lamont,et al.  Evolutionary algorithms for solving multi-objective problems, Second Edition , 2007, Genetic and evolutionary computation series.

[38]  Francisco Luna,et al.  jMetal: a Java Framework for Developing Multi-Objective Optimization Metaheuristics , 2006 .

[39]  Marco Laumanns,et al.  Scalable Test Problems for Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.

[40]  Holger Ulmer,et al.  JavaEvA : a Java based framework for Evolutionary Algorithms , 2005 .

[41]  Marco Laumanns,et al.  A Tutorial on Evolutionary Multiobjective Optimization , 2004, Metaheuristics for Multiobjective Optimisation.

[42]  A. E. Eiben,et al.  Introduction to Evolutionary Computing , 2003, Natural Computing Series.

[43]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[44]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[45]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[46]  C. Fonseca,et al.  GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .

[47]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[48]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[49]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .