Eight years of single-molecule localization microscopy

Abstract Super-resolution imaging by single-molecule localization (localization microscopy) provides the ability to unravel the structural organization of cells and the composition of biomolecular assemblies at a spatial resolution that is well below the diffraction limit approaching virtually molecular resolution. Constant improvements in fluorescent probes, efficient and specific labeling techniques as well as refined data analysis and interpretation strategies further improved localization microscopy. Today, it allows us to interrogate how the distribution and stoichiometry of interacting proteins in subcellular compartments and molecular machines accomplishes complex interconnected cellular processes. Thus, it exhibits potential to address fundamental questions of cell and developmental biology. Here, we briefly introduce the history, basic principles, and different localization microscopy methods with special focus on direct stochastic optical reconstruction microscopy (dSTORM) and summarize key developments and examples of two- and three-dimensional localization microscopy of the last 8 years.

[1]  S. Hell,et al.  STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis , 2006, Nature.

[2]  R. L. Adams,et al.  Uncovering Nuclear Pore Complexity with Innovation , 2013, Cell.

[3]  R. Haugland The Handbook: A Guide to Fluorescent Probes and Labeling Technologies , 2005 .

[4]  W. Webb,et al.  Precise nanometer localization analysis for individual fluorescent probes. , 2002, Biophysical journal.

[5]  M. Heilemann,et al.  Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. , 2008, Angewandte Chemie.

[6]  Mike Heilemann,et al.  Live-cell super-resolution imaging with trimethoprim conjugates , 2010, Nature Methods.

[7]  Julie S Biteen,et al.  Three-dimensional super-resolution imaging of the midplane protein FtsZ in live Caulobacter crescentus cells using astigmatism. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[8]  J. Pawley,et al.  Handbook of Biological Confocal Microscopy , 1990, Springer US.

[9]  Mark Bates,et al.  Three-Dimensional Super-Resolution Imaging by Stochastic Optical Reconstruction Microscopy , 2008, Science.

[10]  Tobias M. P. Hartwich,et al.  Video-rate nanoscopy using sCMOS camera- specific single-molecule localization algorithms , 2013 .

[11]  M. Roeffaers,et al.  Super-resolution reactivity mapping of nanostructured catalyst particles. , 2009, Angewandte Chemie.

[12]  S. Ram,et al.  Improved single particle localization accuracy with dual objective multifocal plane microscopy. , 2009, Optics express.

[13]  D. P. Fromm,et al.  Nonexponential “blinking” kinetics of single CdSe quantum dots: A universal power law behavior , 2000 .

[14]  K Weber,et al.  Cytoplasmic microtubular images in glutaraldehyde-fixed tissue culture cells by electron microscopy and by immunofluorescence microscopy. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[15]  P. Gönczy,et al.  Resolution Doubling in 3D-STORM Imaging through Improved Buffers , 2013, PloS one.

[16]  S. Hell,et al.  Fluorescence nanoscopy by ground-state depletion and single-molecule return , 2008, Nature Methods.

[17]  Hazen P. Babcock,et al.  Dual-objective STORM reveals three-dimensional filament organization in the actin cytoskeleton , 2011, Nature Methods.

[18]  X. Zhuang,et al.  Fast three-dimensional super-resolution imaging of live cells , 2011, Nature Methods.

[19]  Wesley R. Legant,et al.  Carbofluoresceins and Carborhodamines as Scaffolds for High-Contrast Fluorogenic Probes , 2013, ACS chemical biology.

[20]  M. Chalfie GREEN FLUORESCENT PROTEIN , 1995, Photochemistry and photobiology.

[21]  Lord Rayleigh,et al.  On the Theory of Optical Images, with Special Reference to the Microscope , 1903 .

[22]  M. Tokunaga,et al.  Highly inclined thin illumination enables clear single-molecule imaging in cells , 2008, Nature Methods.

[23]  Mark Bates,et al.  Multicolor Super-Resolution Imaging with Photo-Switchable Fluorescent Probes , 2007, Science.

[24]  M. Heilemann,et al.  Direct stochastic optical reconstruction microscopy with standard fluorescent probes , 2011, Nature Protocols.

[25]  Peter J. Verveer,et al.  Chemically Induced Photoswitching of Fluorescent Probes—A General Concept for Super-Resolution Microscopy , 2011, Molecules.

[26]  C. Zimmer,et al.  QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ , 2010, Nature Methods.

[27]  Mark Bates,et al.  Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging , 2011, Nature Methods.

[28]  R. Sec. XV. On the theory of optical images, with special reference to the microscope , 2009 .

[29]  E. Betzig,et al.  Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics , 2008, Nature Methods.

[30]  M. Heilemann,et al.  Carbocyanine dyes as efficient reversible single-molecule optical switch. , 2005, Journal of the American Chemical Society.

[31]  H. Ewers,et al.  A simple, versatile method for GFP-based super-resolution microscopy via nanobodies , 2012, Nature Methods.

[32]  M. Hausmann,et al.  SPDM: light microscopy with single-molecule resolution at the nanoscale , 2008 .

[33]  Michael A Thompson,et al.  Super-resolution imaging in live Caulobacter crescentus cells using photoswitchable EYFP , 2008, Nature Methods.

[34]  N. Daigle,et al.  Nuclear Pore Scaffold Structure Analyzed by Super-Resolution Microscopy and Particle Averaging , 2013, Science.

[35]  Stephan J Sigrist,et al.  Multi‐colour direct STORM with red emitting carbocyanines , 2012, Biology of the cell.

[36]  Markus Sauer,et al.  Localization microscopy coming of age: from concepts to biological impact , 2013, Journal of Cell Science.

[37]  S. Hess,et al.  Triple-color super-resolution imaging of live cells: resolving submicroscopic receptor organization in the plasma membrane. , 2012, Angewandte Chemie.

[38]  Samuel T. Hess,et al.  Dynamic clustered distribution of hemagglutinin resolved at 40 nm in living cell membranes discriminates between raft theories , 2007, Proceedings of the National Academy of Sciences.

[39]  T. Holak,et al.  Lifeact: a versatile marker to visualize F-actin , 2008, Nature Methods.

[40]  Suliana Manley,et al.  A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins. , 2013, Nature chemistry.

[41]  Mike Heilemann,et al.  A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes. , 2008, Angewandte Chemie.

[42]  M. Davidson,et al.  Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination , 2011, Nature Methods.

[43]  Michael J Rust,et al.  Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) , 2006, Nature Methods.

[44]  J. Shaevitz,et al.  Effect of aberration on height calibration in three-dimensional localization-based microscopy and particle tracking. , 2009, Applied optics.

[45]  Mike Heilemann,et al.  Photoswitching microscopy with standard fluorophores , 2008 .

[46]  Michael D. Mason,et al.  Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. , 2006, Biophysical journal.

[47]  Samuel J. Lord,et al.  Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function , 2009, Proceedings of the National Academy of Sciences.

[48]  Mike Heilemann,et al.  Super-resolution imaging with small organic fluorophores. , 2009, Angewandte Chemie.

[49]  Andrew G. York,et al.  Confined Activation and Subdiffractive Localization Enables Whole-Cell PALM with Genetically Expressed Probes , 2011, Nature Methods.

[50]  Michael W. Davidson,et al.  Video-rate nanoscopy enabled by sCMOS camera-specific single-molecule localization algorithms , 2013, Nature Methods.

[51]  E. Gouaux,et al.  Dynamic superresolution imaging of endogenous proteins on living cells at ultra-high density. , 2010, Biophysical journal.

[52]  H. Flyvbjerg,et al.  Optimized localization-analysis for single-molecule tracking and super-resolution microscopy , 2010, Nature Methods.

[53]  M. Sheetz,et al.  In vivo protein labeling with trimethoprim conjugates: a flexible chemical tag , 2005, Nature Methods.

[54]  C.E. Shannon,et al.  Communication in the Presence of Noise , 1949, Proceedings of the IRE.

[55]  Marjeta Urh,et al.  HaloTag: a novel protein labeling technology for cell imaging and protein analysis. , 2008, ACS chemical biology.

[56]  R. Hochstrasser,et al.  Wide-field subdiffraction imaging by accumulated binding of diffusing probes , 2006, Proceedings of the National Academy of Sciences.

[57]  K. Rippe,et al.  Dual color localization microscopy of cellular nanostructures , 2009, Biotechnology journal.

[58]  X. Zhuang,et al.  Superresolution Imaging of Chemical Synapses in the Brain , 2010, Neuron.

[59]  Lord Rayleigh On the Theory of Optical Images, with Special Reference to the Microscope , 1903 .

[60]  J. Lippincott-Schwartz,et al.  High-density mapping of single-molecule trajectories with photoactivated localization microscopy , 2008, Nature Methods.

[61]  Mike Heilemann,et al.  Increasing the brightness of cyanine fluorophores for single-molecule and superresolution imaging. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[62]  Chenglong Xia,et al.  Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes , 2012, Proceedings of the National Academy of Sciences.

[63]  Sebastian van de Linde,et al.  Live-cell dSTORM with SNAP-tag fusion proteins. , 2011, Nature methods.

[64]  Mike Heilemann,et al.  Photoinduced formation of reversible dye radicals and their impact on super-resolution imaging , 2011, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[65]  Andreas Bruckbauer,et al.  The actin and tetraspanin networks organize receptor nanoclusters to regulate B cell receptor-mediated signaling. , 2013, Immunity.

[66]  A. Diaspro,et al.  Live-cell 3D super-resolution imaging in thick biological samples , 2011, Nature Methods.

[67]  Michael W. Davidson,et al.  Nanoscale architecture of integrin-based cell adhesions , 2010, Nature.

[68]  C. Bertozzi,et al.  In Vivo Imaging of Membrane-Associated Glycans in Developing Zebrafish , 2008, Science.

[69]  Rainer Heintzmann,et al.  High-resolution colocalization of single dye molecules by fluorescence lifetime imaging microscopy. , 2002, Analytical chemistry.

[70]  Jan Vogelsang,et al.  Controlling the fluorescence of ordinary oxazine dyes for single-molecule switching and superresolution microscopy , 2009, Proceedings of the National Academy of Sciences.

[71]  S. Hell Microscopy and its focal switch , 2008, Nature Methods.

[72]  Ignacio Izeddin,et al.  Assessing the localization of centrosomal proteins by PALM/STORM nanoscopy , 2011, Cytoskeleton.

[73]  S. Hell,et al.  Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. , 1994, Optics letters.

[74]  M. Gustafsson Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy , 2000, Journal of microscopy.

[75]  Steven F. Lee,et al.  Improved super-resolution microscopy with oxazine fluorophores in heavy water. , 2013, Angewandte Chemie.

[76]  Mike Heilemann,et al.  Subdiffraction-resolution fluorescence microscopy of myosin-actin motility. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[77]  I. Johnson,et al.  The molecular probes handbook : a guide to fluorescent probes and labeling technologies , 2010 .

[78]  J. Murray,et al.  A common aberration with water‐immersion objective lenses , 2004, Journal of microscopy.

[79]  Jacob Piehler,et al.  Nanoscale organization of mitochondrial microcompartments revealed by combining tracking and localization microscopy. , 2012, Nano letters.

[80]  Mike Heilemann,et al.  Multicolor photoswitching microscopy for subdiffraction-resolution fluorescence imaging , 2009, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[81]  L. Holtzer,et al.  Nanometric three-dimensional tracking of individual quantum dots in cells , 2007 .

[82]  H. P. Kao,et al.  Tracking of single fluorescent particles in three dimensions: use of cylindrical optics to encode particle position. , 1994, Biophysical journal.

[83]  E. Betzig,et al.  Proposed method for molecular optical imaging. , 1995, Optics letters.

[84]  Bernd Rieger,et al.  Super-resolution imaging visualizes the eightfold symmetry of gp210 proteins around the nuclear pore complex and resolves the central channel with nanometer resolution , 2012, Journal of Cell Science.

[85]  C. Soeller,et al.  Three-dimensional sub-100 nm super-resolution imaging of biological samples using a phase ramp in the objective pupil , 2011 .

[86]  Frank Bradke,et al.  Three-dimensional imaging of solvent-cleared organs using 3DISCO , 2012, Nature Protocols.

[87]  S. Hell,et al.  Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index , 1993 .

[88]  David Baddeley,et al.  Light-induced dark states of organic fluochromes enable 30 nm resolution imaging in standard media. , 2009, Biophysical journal.

[89]  J. Lippincott-Schwartz,et al.  Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure , 2009, Proceedings of the National Academy of Sciences.

[90]  C. Dobson,et al.  In situ measurements of the formation and morphology of intracellular β-amyloid fibrils by super-resolution fluorescence imaging. , 2011, Journal of the American Chemical Society.

[91]  S. van de Linde,et al.  Live‐Cell Super‐Resolution Imaging Goes Multicolor , 2012, Chembiochem : a European journal of chemical biology.

[92]  Jonathan A Javitch,et al.  Cyanine fluorophore derivatives with enhanced photostability , 2011, Nature Methods.

[93]  Richard H. Sherman,et al.  Chaotic communications in the presence of noise , 1993, Optics & Photonics.

[94]  Jürgen Köhler,et al.  3-Dimensional super-resolution by spectrally selective imaging , 1998 .

[95]  M. Sauer,et al.  rapidSTORM: accurate, fast open-source software for localization microscopy , 2012, Nature Methods.

[96]  Christian Eggeling,et al.  Nanoscopy with more than 100,000 'doughnuts' , 2013, Nature Methods.

[97]  Stefan W. Hell,et al.  Focal spots of size λ/23 open up far-field florescence microscopy at 33 nm axial resolution , 2003 .

[98]  K. Deisseroth,et al.  CLARITY for mapping the nervous system , 2013, Nature Methods.

[99]  S. Hell,et al.  Focal spots of size lambda/23 open up far-field fluorescence microscopy at 33 nm axial resolution. , 2002, Physical review letters.

[100]  Kai Johnsson,et al.  An engineered protein tag for multiprotein labeling in living cells. , 2008, Chemistry & biology.

[101]  David R. Liu,et al.  Photoswitching Mechanism of Cyanine Dyes , 2009, Journal of the American Chemical Society.

[102]  S Wolter,et al.  Real‐time computation of subdiffraction‐resolution fluorescence images , 2010, Journal of microscopy.

[103]  R. Heintzmann,et al.  Superresolution by localization of quantum dots using blinking statistics. , 2005, Optics express.

[104]  Jan Vogelsang,et al.  Superresolution microscopy on the basis of engineered dark states. , 2008, Journal of the American Chemical Society.

[105]  Mike Heilemann,et al.  Super-resolution fluorescence imaging of chromosomal DNA. , 2012, Journal of structural biology.

[106]  Mark Bates,et al.  Short-range spectroscopic ruler based on a single-molecule optical switch. , 2005, Physical review letters.

[107]  A. Egner,et al.  Resolution of λ /10 in fluorescence microscopy using fast single molecule photo-switching , 2007 .

[108]  A. Egner,et al.  Two-color far-field fluorescence nanoscopy based on photoswitchable emitters , 2007 .

[109]  S. Hell,et al.  Rhodamines NN: a novel class of caged fluorescent dyes. , 2010, Angewandte Chemie.

[110]  M. Davidson,et al.  Noninvasive Imaging beyond the Diffraction Limit of 3D Dynamics in Thickly Fluorescent Specimens , 2012, Cell.

[111]  E. Abbe Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung , 1873 .

[112]  R. Tsien,et al.  The Fluorescent Toolbox for Assessing Protein Location and Function , 2006, Science.

[113]  Astrid Magenau,et al.  Pre-existing clusters of the adaptor Lat do not participate in early T cell signaling events , 2011, Nature Immunology.

[114]  X. Zhuang,et al.  Whole cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution , 2008, Nature Methods.

[115]  Michael W. Davidson,et al.  Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes , 2007, Proceedings of the National Academy of Sciences.

[116]  M. Gustafsson Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[117]  Bryant B. Chhun,et al.  Super-Resolution Video Microscopy of Live Cells by Structured Illumination , 2009, Nature Methods.

[118]  Rainer Heintzmann,et al.  Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating , 1999, European Conference on Biomedical Optics.

[119]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[120]  M. Heilemann,et al.  Live-cell super-resolution imaging with synthetic fluorophores. , 2012, Annual review of physical chemistry.

[121]  Katharina Gaus,et al.  Conformational states of the kinase Lck regulate clustering in early T cell signaling , 2012, Nature Immunology.

[122]  J. Lippincott-Schwartz,et al.  Photoactivatable fluorescent proteins for diffraction-limited and super-resolution imaging. , 2009, Trends in cell biology.

[123]  H. Vogel,et al.  A general method for the covalent labeling of fusion proteins with small molecules in vivo , 2003, Nature Biotechnology.

[124]  F. Del Bene,et al.  Optical Sectioning Deep Inside Live Embryos by Selective Plane Illumination Microscopy , 2004, Science.

[125]  J. Lippincott-Schwartz,et al.  Development and Use of Fluorescent Protein Markers in Living Cells , 2003, Science.

[126]  S. Hess,et al.  Three-dimensional sub–100 nm resolution fluorescence microscopy of thick samples , 2008, Nature Methods.

[127]  Sarah Aufmkolk,et al.  Investigating cellular structures at the nanoscale with organic fluorophores. , 2013, Chemistry & biology.

[128]  S. Manley,et al.  Multicolor single molecule tracking of stochastically active synthetic dyes. , 2012, Nano letters.

[129]  U. Endesfelder,et al.  A hydrophilic gel matrix for single-molecule super-resolution microscopy , 2013, Optical Nanoscopy.