Partition Crossover for Pseudo-Boolean Optimization

A partition crossover operator is introduced for use with NK landscapes, MAX-kSAT and for all k-bounded pseudo-Boolean functions. By definition, these problems use a bit representation. Under partition crossover, the evaluation of offspring can be directly obtained from partial evaluations of substrings found in the parents. Partition crossover explores the variable interaction graph of the pseudo-Boolean functions in order to partition the variables of the solution vector. Proofs are presented showing that if the differing variable assignments found in the two parents can be partitioned into q non-interacting sets, partition crossover can be used to find the best of 2q possible offspring. Proofs are presented which show that parents that are locally optimal will always generate offspring that are locally optimal with respect to a (more restricted) hyperplane subspace. Empirical experiments show that parents that are locally optimal generate offspring that are locally optimal in the full search space more than 80 percent of the time. Experimental results also show the effectiveness of the proposed crossover when used in combination with a hybrid genetic algorithm.

[1]  A. Mobius,et al.  COMBINATORIAL OPTIMIZATION BY ITERATIVE PARTIAL TRANSCRIPTION , 1999, cond-mat/9902034.

[2]  Holger H. Hoos,et al.  An adaptive noise mechanism for walkSAT , 2002, AAAI/IAAI.

[3]  L. Darrell Whitley,et al.  Test Function Generators as Embedded Landscapes , 1998, FOGA.

[4]  Martin Pelikan,et al.  Network crossover performance on NK landscapes and deceptive problems , 2010, GECCO '10.

[5]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[6]  Bart Selman,et al.  Satisfiability Solvers , 2008, Handbook of Knowledge Representation.

[7]  Robert B. Heckendorn Embedded Landscapes , 2002, Evolutionary Computation.

[8]  Stuart A. Kauffman,et al.  ORIGINS OF ORDER IN EVOLUTION: SELF-ORGANIZATION AND SELECTION , 1992 .

[9]  Nicholas J. Radcliffe,et al.  The algebra of genetic algorithms , 1994, Annals of Mathematics and Artificial Intelligence.

[10]  Kiyoshi Tanaka,et al.  Genetic Algorithms on NK-Landscapes: Effects of Selection, Drift, Mutation, and Recombination , 2003, EvoWorkshops.

[11]  Dirk Thierens,et al.  Evolvability Analysis of the Linkage Tree Genetic Algorithm , 2012, PPSN.

[12]  Patrick D. Surry,et al.  Fitness Variance of Formae and Performance Prediction , 1994, FOGA.

[13]  L. Darrell Whitley,et al.  Constant time steepest descent local search with lookahead for NK-landscapes and MAX-kSAT , 2012, GECCO '12.

[14]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[15]  Xin-She Yang,et al.  Introduction to Algorithms , 2021, Nature-Inspired Optimization Algorithms.

[16]  Doug Hains,et al.  Tunneling between optima: partition crossover for the traveling salesman problem , 2009, GECCO.

[17]  Keld Helsgaun,et al.  An effective implementation of the Lin-Kernighan traveling salesman heuristic , 2000, Eur. J. Oper. Res..

[18]  Doug Hains,et al.  Revisiting the big valley search space structure in the TSP , 2011, J. Oper. Res. Soc..

[19]  Alden H. Wright,et al.  The computational complexity of N-K fitness functions , 2000, IEEE Trans. Evol. Comput..

[20]  L. Darrell Whitley,et al.  A Walsh Analysis of NK-Landscapes , 1997, ICGA.

[21]  Kenneth A. De Jong,et al.  An Analysis of Multi-Point Crossover , 1990, FOGA.

[22]  Dirk Thierens,et al.  The Linkage Tree Genetic Algorithm , 2010, PPSN.

[23]  Doug Hains,et al.  Second order partial derivatives for NK-landscapes , 2013, GECCO '13.

[24]  Bart Selman,et al.  Noise Strategies for Improving Local Search , 1994, AAAI.

[25]  Gilbert Syswerda,et al.  Uniform Crossover in Genetic Algorithms , 1989, ICGA.

[26]  Keith E. Mathias,et al.  Niches in NK-Landscapes , 2000, FOGA.

[27]  Thomas Stützle,et al.  SATLIB: An Online Resource for Research on SAT , 2000 .

[28]  Andrew M. Sutton,et al.  Efficient identification of improving moves in a ball for pseudo-boolean problems , 2014, GECCO.

[29]  Stuart A. Kauffman,et al.  The origins of order , 1993 .

[30]  Endre Boros,et al.  Pseudo-Boolean optimization , 2002, Discret. Appl. Math..

[31]  Sébastien Vérel,et al.  A study of NK landscapes' basins and local optima networks , 2008, GECCO '08.

[32]  Martin V. Butz,et al.  Performance of evolutionary algorithms on NK landscapes with nearest neighbor interactions and tunable overlap , 2009, GECCO '09.