Regularized integral equations and fast high‐order solvers for sound‐hard acoustic scattering problems

This text introduces the following: (1) new regularized combined field integral equations (CFIE-R) for frequency-domain sound-hard scattering problems; and (2) fast, high-order algorithms for the numerical solution of the CFIE-R and related integral equations. Similar to the classical combined field integral equation (CFIE), the CFIE-R are uniquely-solvable integral equations based on the use of single and double layer potentials. Unlike the CFIE, however, the CFIE-R utilize a composition of the double-layer potential with a regularizing operator that gives rise to highly favorable spectral properties—thus making it possible to produce accurate solutions by means of iterative solvers in small numbers of iterations. The CFIE-R-based fast high-order integral algorithms introduced in this text enable highly accurate solution of challenging sound-hard scattering problems, including hundred-wavelength cases, in single-processor runs on present-day desktop computers. A variety of numerical results demonstrate the qualities of the numerical solvers as well as the advantages that arise from the new integral equation formulation.

[1]  Jean-Claude Nédélec,et al.  Des préconditionneurs pour la résolution numérique des équations intégrales de frontière de l'acoustique , 2000 .

[2]  R. Kress Minimizing the condition number of boundary integral operators in acoustic and electromagnetic scattering , 1985 .

[3]  Mario Bebendorf,et al.  Comparison of the Fast Multipole Method with Hierarchical Matrices for the Helmholtz-BEM , 2010 .

[4]  Peter Werner,et al.  Über das Dirichletsche Außenraumproblem für die Helmholtzsche Schwingungsgleichung , 1965 .

[5]  R. Kress,et al.  Integral equation methods in scattering theory , 1983 .

[6]  Oscar P. Bruno,et al.  Accurate, high-order representation of complex three-dimensional surfaces via Fourier continuation analysis , 2007, J. Comput. Phys..

[7]  M. Bleszynski,et al.  AIM: Adaptive integral method for solving large‐scale electromagnetic scattering and radiation problems , 1996 .

[8]  Zydrunas Gimbutas,et al.  A wideband fast multipole method for the Helmholtz equation in three dimensions , 2006, J. Comput. Phys..

[9]  J. Nédélec Acoustic and electromagnetic equations , 2001 .

[10]  John L. Volakis,et al.  Incomplete LU preconditioner for FMM implementation , 2000 .

[11]  Randy C. Paffenroth,et al.  Electromagnetic integral equations requiring small numbers of Krylov-subspace iterations , 2009, J. Comput. Phys..

[12]  Oscar P. Bruno,et al.  Surface scattering in three dimensions: an accelerated high–order solver , 2001, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[13]  Akash Anand,et al.  Well conditioned boundary integral equations for two-dimensional sound-hard scattering problems in domains with corners , 2012 .

[14]  O. Bruno,et al.  A fast, high-order algorithm for the solution of surface scattering problems: basic implementation, tests, and applications , 2001 .

[15]  X. Antoine,et al.  Alternative integral equations for the iterative solution of acoustic scattering problems , 2005 .

[16]  Rainer Kress,et al.  On the numerical solution of a hypersingular integral equation in scattering theory , 1995 .

[17]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[18]  W. McLean Strongly Elliptic Systems and Boundary Integral Equations , 2000 .

[19]  Bruno Carpentieri,et al.  Combining Fast Multipole Techniques and an Approximate Inverse Preconditioner for Large Electromagnetism Calculations , 2005, SIAM J. Sci. Comput..

[20]  V. Rokhlin Diagonal Forms of Translation Operators for the Helmholtz Equation in Three Dimensions , 1993 .

[21]  Jiming Song,et al.  Fast Illinois solver code (FISC) , 1998 .

[22]  Jianxin Zhou,et al.  Boundary element methods , 1992, Computational mathematics and applications.

[23]  Bruno Carpentieri,et al.  A Matrix-free Two-grid Preconditioner for Solving Boundary Integral Equations in Electromagnetism , 2006, Computing.

[24]  Jun Zhang,et al.  Sparse inverse preconditioning of multilevel fast multipole algorithm for hybrid Integral equations in electromagnetics , 2004 .

[25]  G. F. Miller,et al.  The application of integral equation methods to the numerical solution of some exterior boundary-value problems , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[26]  Jian-Ming Jin,et al.  Fast and Efficient Algorithms in Computational Electromagnetics , 2001 .

[27]  Iterative solution of high-order boundary element method for acoustic impedance boundary value problems , 2006 .

[28]  Olaf Steinbach,et al.  The construction of some efficient preconditioners in the boundary element method , 1998, Adv. Comput. Math..

[29]  Michele Benzi,et al.  A Sparse Approximate Inverse Preconditioner for Nonsymmetric Linear Systems , 1998, SIAM J. Sci. Comput..

[30]  X. Antoine,et al.  GENERALIZED COMBINED FIELD INTEGRAL EQUATIONS FOR THE ITERATIVE SOLUTION OF THE THREE-DIMENSIONAL HELMHOLTZ EQUATION , 2007 .

[31]  P. Harris,et al.  A comparison between various boundary integral formulations of the exterior acoustic problem , 1990 .