Improved quantitative 19F MR molecular imaging with flip angle calibration and B1‐mapping compensation

To improve 19F flip angle calibration and compensate for B1 inhomogeneities in quantitative 19F MRI of sparse molecular epitopes with perfluorocarbon (PFC) nanoparticle (NP) emulsion contrast agents.

[1]  E. Ahrens,et al.  In vivo MRI cell tracking using perfluorocarbon probes and fluorine‐19 detection , 2013, NMR in biomedicine.

[2]  S A Wickline,et al.  Novel MRI Contrast Agent for Molecular Imaging of Fibrin: Implications for Detecting Vulnerable Plaques , 2001, Circulation.

[3]  S A Wickline,et al.  MR molecular imaging of angiogenesis using targeted perfluorocarbon nanoparticles. , 2010, Medicamundi.

[4]  Jürgen Rahmer,et al.  Balanced UTE‐SSFP for 19F MR imaging of complex spectra , 2015, Magnetic resonance in medicine.

[5]  Samuel A. Wickline,et al.  Molecular Imaging of Angiogenesis in Early-Stage Atherosclerosis With &agr;v&bgr;3-Integrin–Targeted Nanoparticles , 2003 .

[6]  J. Zic,et al.  Gadolinium deposition in nephrogenic fibrosing dermopathy. , 2007, Journal of the American Academy of Dermatology.

[7]  Shelton D Caruthers,et al.  Simultaneous Dual Frequency $^{1}{\rm H}$ and $^{19}{\rm F}$ Open Coil Imaging of Arthritic Rabbit Knee at 3T , 2011, IEEE Transactions on Medical Imaging.

[8]  P. Antich,et al.  Perfluorocarbon imaging in vivo: a 19F MRI study in tumor-bearing mice. , 1989, Magnetic resonance imaging.

[9]  Peter Börnert,et al.  Three‐dimensional radial ultrashort echo‐time imaging with T2 adapted sampling , 2006, Magnetic resonance in medicine.

[10]  Tobias Schaeffter,et al.  Simultaneous dual‐nuclei imaging for motion corrected detection and quantification of 19F imaging agents , 2011, Magnetic resonance in medicine.

[11]  C H Lorenz,et al.  Enhanced detection of thrombi with a novel fibrin-targeted magnetic resonance imaging agent. , 1998, Academic radiology.

[12]  Jeff W M Bulte,et al.  Iron oxide MR contrast agents for molecular and cellular imaging , 2004, NMR in biomedicine.

[13]  M. Foster Magnetic resonance in medicine and biology. , 1984, Progress in nuclear medicine.

[14]  S. Caruthers,et al.  Three‐dimensional MR mapping of angiogenesis with α5β1(αvβ3)‐targeted theranostic nanoparticles in the MDA‐MB‐435 xenograft mouse model , 2008, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[15]  S. Caruthers,et al.  Molecular imaging and therapy of atherosclerosis with targeted nanoparticles , 2007, Journal of magnetic resonance imaging : JMRI.

[16]  Kirk D. Wallace,et al.  Simultaneous Dual Frequency 1H and 19F Open Coil Imaging of Arthritic Rabbit Knee at 3T , 2011, IEEE Trans. Medical Imaging.

[17]  P. Murphy,et al.  Fluorine magnetic resonance in vivo: a powerful tool in the study of drug distribution and metabolism. , 2008, Drug discovery today.

[18]  Shelton D Caruthers,et al.  Magnetic resonance molecular imaging with nanoparticles , 2004, Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology.

[19]  A. Djamali,et al.  Nephrogenic systemic fibrosis: risk factors and incidence estimation. , 2007, Radiology.

[20]  S. Caruthers,et al.  Magnetic Resonance Molecular Imaging and Targeted Therapeutics , 2008 .

[21]  A. Rehemtulla,et al.  Molecular Imaging , 2009, Methods in Molecular Biology.

[22]  Kyunghyun Sung,et al.  Transmit B1+ field inhomogeneity and T1 estimation errors in breast DCE‐MRI at 3 tesla , 2013, Journal of magnetic resonance imaging : JMRI.

[23]  Piotr Walczak,et al.  Use of perfluorocarbon nanoparticles for non-invasive multimodal cell tracking of human pancreatic islets. , 2011, Contrast media & molecular imaging.

[24]  Patrick J. Gaffney,et al.  Quantitative “magnetic resonance immunohistochemistry” with ligand‐targeted 19F nanoparticles , 2004 .

[25]  Lei Zhang,et al.  A generalized strategy for designing 19F/1H dual‐frequency MRI coil for small animal imaging at 4.7 Tesla , 2011, Journal of magnetic resonance imaging : JMRI.

[26]  Jessika Weiss,et al.  Magnetic Resonance Imaging Theory And Practice , 2016 .

[27]  H. Shinohara,et al.  Paramagnetic water-soluble metallofullerenes having the highest relaxivity for MRI contrast agents. , 2001, Bioconjugate chemistry.

[28]  Garry E. Kiefer,et al.  Imaging of Vx‐2 rabbit tumors with ανβ3‐integrin‐targeted 111In nanoparticles , 2007 .

[29]  Samuel A Wickline,et al.  Quantitative magnetic resonance fluorine imaging: today and tomorrow. , 2010, Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology.

[30]  Shelton D Caruthers,et al.  Targeted nanoparticles for quantitative imaging of sparse molecular epitopes with MRI , 2004, Magnetic resonance in medicine.

[31]  Samuel A Wickline,et al.  Nanotechnology for molecular imaging and targeted therapy. , 2003, Circulation.