Electrical Characteristics of Ultrathin InZnO Thin-Film Transistors Prepared by Atomic Layer Deposition

In this article, enhancement-mode thin-film transistors (TFTs) with atomic layer deposition (ALD)-derived ultrathin (≈3 nm) amorphous indium–zinc oxide (a-IZO) channel were demonstrated. Our devices showed improved device characteristics as benchmarked with thicker IZO thin-film channels. The ALD-deposited IZO channel TFT with an In/Zn ratio of ≈6:4 exhibited a high field-effect channel mobility (<inline-formula> <tex-math notation="LaTeX">$\mu _{\text {FE}}{)}$ </tex-math></inline-formula> of 53.6 cm2/V-s, a threshold voltage (<inline-formula> <tex-math notation="LaTeX">${V}_{\text {th}}{)}$ </tex-math></inline-formula> of 0.28 V, a low subthreshold gate swing of 74 mV/decade, an <inline-formula> <tex-math notation="LaTeX">$I_{ \mathrm{\scriptscriptstyle ON}}/I_{ \mathrm{\scriptscriptstyle OFF}}$ </tex-math></inline-formula> ratio of ><inline-formula> <tex-math notation="LaTeX">$10^{{9}}$ </tex-math></inline-formula>, and a contact resistance of 0.18 <inline-formula> <tex-math notation="LaTeX">$\text{k}\Omega $ </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula> after 300°C anneal in oxygen atmosphere. Physical analysis, including X-ray and ultraviolet (UV) photoelectron spectra of IZO films, was conducted to understand the mechanisms of enhancement in electrical performance after annealing. The threshold voltages of the TFT also exhibited high stability (<inline-formula> <tex-math notation="LaTeX">$\Delta {V}_{\text {th, PBS}} < 16$ </tex-math></inline-formula> mV and <inline-formula> <tex-math notation="LaTeX">$\Delta {V}_{\text {th, NBS}} < 12$ </tex-math></inline-formula> mV) after positive bias stress (PBS) and negative bias stress (NBS) test for 3600 s. To the best of our knowledge, we reported the TFT with thinnest IZO ternary oxide semiconductor (OS) channel exhibiting superior channel mobility and subthreshold characteristics.

[1]  Min Jae Kim,et al.  Effect of Channel Thickness on Performance of Ultra-Thin Body IGZO Field-Effect Transistors , 2022, IEEE Transactions on Electron Devices.

[2]  J. Jeong,et al.  Comparative Study of Atomic Layer Deposited Indium-Based Oxide Transistors with a Fermi Energy Level-Engineered Heterojunction Structure Channel through a Cation Combinatorial Approach. , 2022, ACS applied materials & interfaces.

[3]  P. Ye,et al.  Scaled indium oxide transistors fabricated using atomic layer deposition , 2022, Nature Electronics.

[4]  K. No,et al.  Carrier Density-Tunable Work Function Buffer at the Channel/Metallization Interface for Amorphous Oxide Thin-Film Transistors , 2021 .

[5]  S. Datta,et al.  Low Thermal Budget (<250 °C) Dual-Gate Amorphous Indium Tungsten Oxide (IWO) Thin-Film Transistor for Monolithic 3-D Integration , 2020, IEEE Transactions on Electron Devices.

[6]  Jong-Heon Yang,et al.  All-oxide thin-film transistors with channels of mixed InOx-ZnOy formed by plasma-enhanced atomic layer deposition process , 2019 .

[7]  Hideo Hosono,et al.  Amorphous IGZO TFT with High Mobility of ~70 cm2/Vs via Vertical Dimension Control using PEALD. , 2019, ACS applied materials & interfaces.

[8]  S. Zhang,et al.  Implementation of Self-Aligned Top-Gate Amorphous Zinc Tin Oxide Thin-Film Transistors , 2019, IEEE Electron Device Letters.

[9]  Jin-seong Park,et al.  Design of InZnSnO Semiconductor Alloys Synthesized by Supercycle Atomic Layer Deposition and Their Rollable Applications. , 2019, ACS applied materials & interfaces.

[10]  Jin-seong Park,et al.  Review Article: Atomic layer deposition for oxide semiconductor thin film transistors: Advances in research and development , 2018, Journal of Vacuum Science & Technology A.

[11]  Jae Kyeong Jeong,et al.  High-Performance Amorphous Indium Gallium Zinc Oxide Thin-Film Transistors Fabricated by Atomic Layer Deposition , 2018, IEEE Electron Device Letters.

[12]  F. Roozeboom,et al.  Atmospheric plasma-enhanced spatial-ALD of InZnO for high mobility thin film transistors , 2018, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films.

[13]  J. Medvedeva,et al.  Recent Advances in Understanding the Structure and Properties of Amorphous Oxide Semiconductors , 2017 .

[14]  Shuang Li,et al.  Performances of transparent indium zinc oxide thin film transistors using ZrO2 as dielectric processed by solution method , 2017 .

[15]  Jin-seong Park,et al.  Low-Temperature Growth of Indium Oxide Thin Film by Plasma-Enhanced Atomic Layer Deposition Using Liquid Dimethyl(N-ethoxy-2,2-dimethylpropanamido)indium for High-Mobility Thin Film Transistor Application. , 2016, ACS applied materials & interfaces.

[16]  Qun Zhang,et al.  Influence of channel layer thickness on the stability of amorphous indium zinc oxide thin film transistors , 2016 .

[17]  D. Matsubayashi,et al.  20-nm-Node trench-gate-self-aligned crystalline In-Ga-Zn-Oxide FET with high frequency and low off-state current , 2015, 2015 IEEE International Electron Devices Meeting (IEDM).

[18]  Jae Kyeong Jeong,et al.  Improvement in Field-Effect Mobility of Indium Zinc Oxide Transistor by Titanium Metal Reaction Method , 2015, IEEE Transactions on Electron Devices.

[19]  Patrick R. Briddon,et al.  Native Point Defects in ZnO , 2014 .

[20]  J. Park,et al.  Self-aligned top-gate amorphous indium zinc oxide thin-film transistors exceeding low-temperature poly-Si transistor performance. , 2013, ACS applied materials & interfaces.

[21]  Sunho Jeong,et al.  Solution-deposited Zr-doped AlOx gate dielectrics enabling high-performance flexible transparent thin film transistors , 2013 .

[22]  T. Kamiya,et al.  Origins of High Mobility and Low Operation Voltage of Amorphous Oxide TFTs: Electronic Structure, Electron Transport, Defects and Doping* , 2009, Journal of Display Technology.

[23]  C. J. Kim,et al.  High performance oxide thin film transistors with double active layers , 2008, 2008 IEEE International Electron Devices Meeting.

[24]  Ryan O'Hayre,et al.  General mobility and carrier concentration relationship in transparent amorphous indium zinc oxide films , 2008 .

[25]  Hideo Hosono,et al.  Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application , 2006 .

[26]  A. Janotti,et al.  Oxygen vacancies in ZnO , 2005 .

[27]  A. Zunger,et al.  Anion vacancies as a source of persistent photoconductivity in II-VI and chalcopyrite semiconductors , 2005, cond-mat/0503018.

[28]  H. Ohta,et al.  Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors , 2004, Nature.

[29]  Hideo Hosono,et al.  Carrier transport in transparent oxide semiconductor with intrinsic structural randomness probed using single-crystalline InGaO3(ZnO)5 films , 2004 .