Extinction threshold in metapopulation models

The term extinction threshold refers to a critical value of some attribute, such as the amount of habitat in the landscape, below which a population, a metapopulation, or a species does not persist. In this paper we discuss the existence and behavior of extinction thresholds in the context of metapopulation models. We review and extend recent developments in the theory and application of patch occupancy models, which have been developed for assessing the dynamics of species inhabiting highly fragmented landscapes. We discuss the relationship between deterministic and stochastic models, the possibility of alternative equilibria, transient dynamics following perturbations from the equilibrium state, and the effect of spatially correlated and temporally varying environmental conditions. We illustrate the theory with an empirical example based on the Glanville fritillary butterfly (Melitaea cinxia) metapopulation in the bland Islands in southwest Finland.

[1]  Mats Gyllenberg,et al.  Structured Metapopulation Models , 1997 .

[2]  Atte Moilanen,et al.  The equilibrium assumption in estimating the parameters of metapopulation models. , 2000 .

[3]  R. May,et al.  Infectious Diseases of Humans: Dynamics and Control , 1991, Annals of Internal Medicine.

[4]  R. Etienne Local populations of different sizes, mechanistic rescue effect and patch preference in the Levins metapopulation model , 2000, Bulletin of mathematical biology.

[5]  T. Burkey Metapopulation Extinction in Fragmented Landscapes: Using Bacteria and Protozoa Communities as Model Ecosystems , 1997, The American Naturalist.

[6]  Ilkka Hanski,et al.  Single-Species Spatial Dynamics May Contribute to Long-Term Rarity and Commonness , 1985 .

[7]  P. Gaona,et al.  DYNAMICS AND VIABILITY OF A METAPOPULATION OF THE ENDANGERED IBERIAN LYNX (LYNX PARDINUS) , 1998 .

[8]  R. Thomas,et al.  Multiregion contact systems for modelling STD epidemics. , 2000, Statistics in medicine.

[9]  Otso Ovaskainen,et al.  Metapopulation dynamics in highly fragmented landscapes , 2004 .

[10]  R. Lande,et al.  Extinction Thresholds in Demographic Models of Territorial Populations , 1987, The American Naturalist.

[11]  H. Andrén,et al.  Population responses to habitat fragmentation: statistical power and the random sample hypothesis , 1996 .

[12]  Ilkka Hanski,et al.  Single‐species metapopulation dynamics: concepts, models and observations , 1991 .

[13]  A. Hastings,et al.  Within‐Patch Dynamics in a Metapopulation , 1989 .

[14]  Andrew Gonzalez,et al.  Heterotroph species extinction, abundance and biomass dynamics in an experimentally fragmented microecosystem , 2002 .

[15]  H. Andrén,et al.  Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: a review , 1994 .

[16]  S. Boorman Mathematical theory of group selection: Structure of group selection in founder populations determined from convexity of the extinction operator. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[17]  R. Anderson,et al.  Mathematical Models of the Transmission and Control of Sexually Transmitted Diseases , 2000, Sexually transmitted diseases.

[18]  Atte Moilanen,et al.  Single‐species dynamic site selection , 2002 .

[19]  Ilkka Hanski,et al.  Long‐Term Dynamics in a Metapopulation of the American Pika , 1998, The American Naturalist.

[20]  S. Nee How populations persist , 1994, Nature.

[21]  Alan Hastings,et al.  Structured models of metapopulation dynamics , 1991 .

[22]  R. Brunham Core group theory: a central concept in STD epidemiology , 1997 .

[23]  I. Hanski Metapopulation of animals in highly fragmented landscapes and population viability analysis , 2002 .

[24]  Ilkka Hanski,et al.  Multiple equilibria in metapopulation dynamics , 1995, Nature.

[25]  Ilkka Hanski,et al.  Metapopulation structure of Cotesia melitaearum, a specialist parasitoid of the butterfly Melitaea cinxia , 1997 .

[26]  P. Foley,et al.  Predicting Extinction Times from Environmental Stochasticity and Carrying Capacity , 1994 .

[27]  H. Andersson,et al.  A threshold limit theorem for the stochastic logistic epidemic , 1998 .

[28]  A. McKane,et al.  Extinction dynamics in mainland-island metapopulations: An N-patch stochastic model , 2002, Bulletin of mathematical biology.

[29]  Otso Ovaskainen,et al.  The Effective Size of a Metapopulation Living in a Heterogeneous Patch Network , 2002, The American Naturalist.

[30]  R. Lande Risks of Population Extinction from Demographic and Environmental Stochasticity and Random Catastrophes , 1993, The American Naturalist.

[31]  R. Foppen,et al.  Introducing the key patch approach for habitat networks with persistent populations: an example for marshland birds , 2001 .

[32]  Ilkka Hanski,et al.  Coexistence of Competitors in Patchy Environment , 1983 .

[33]  James H. Brown,et al.  Turnover Rates in Insular Biogeography: Effect of Immigration on Extinction , 1977 .

[34]  Uhanalaisten lajien Ii seurantaryhmä Suomen lajien uhanalaisuus 2000 , 2001 .

[35]  Amy W. Ando,et al.  On the Use of Demographic Models of Population Viability in Endangered Species Management , 1998 .

[36]  R. Etienne,et al.  Non-equilibria in small metapopulations: comparing the deterministic Levins model with its stochastic counterpart. , 2002, Journal of Theoretical Biology.

[37]  R. Levins,et al.  Regional Coexistence of Species and Competition between Rare Species. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Bernt-Erik Sæther,et al.  Stochastic population dynamics and time to extinction of a declining population of barn swallows , 2001 .

[39]  T. Pakkala,et al.  Spatial ecology of the three-toed woodpecker in managed forest landscapes. , 2002 .

[40]  Mats Gyllenberg,et al.  Single-species metapopulation dynamics: A structured model , 1992 .

[41]  D. Ludwig Is it meaningful to estimate a probability of extinction , 1999 .

[42]  Gonzalez,et al.  Metapopulation dynamics, abundance, and distribution in a microecosystem , 1998, Science.

[43]  Otso Ovaskainen,et al.  The metapopulation capacity of a fragmented landscape , 2000, Nature.

[44]  O. Ovaskainen,et al.  Spatially structured metapopulation models: global and local assessment of metapopulation capacity. , 2001, Theoretical population biology.

[45]  Otso Ovaskainen,et al.  4 – Metapopulation Dynamics in Highly Fragmented Landscapes , 2004 .

[46]  R. Levins Some Demographic and Genetic Consequences of Environmental Heterogeneity for Biological Control , 1969 .

[47]  O. Ovaskainen,et al.  Extinction Debt at Extinction Threshold , 2002 .

[48]  R. Holt,et al.  A Survey and Overview of Habitat Fragmentation Experiments , 2000 .

[49]  P. Marquet,et al.  Threshold parameters and metapopulation persistence , 1999, Bulletin of mathematical biology.

[50]  David B. Lindenmayer,et al.  Ranking Conservation and Timber Management Options for Leadbeater's Possum in Southeastern Australia Using Population Viability Analysis , 1996 .

[51]  R. Lande,et al.  EXTINCTION TIMES IN FINITE METAPOPULATION MODELS WITH STOCHASTIC LOCAL DYNAMICS , 1998 .

[52]  Roy M. Anderson,et al.  Vaccination and herd immunity to infectious diseases , 1985, Nature.

[53]  Rampal S. Etienne,et al.  IMPROVED BAYESIAN ANALYSIS OF METAPOPULATION DATA WITH AN APPLICATION TO A TREE FROG METAPOPULATION , 2003 .

[54]  Otso Ovaskainen,et al.  The quasistationary distribution of the stochastic logistic model , 2001, Journal of Applied Probability.

[55]  Renato Casagrandi,et al.  Habitat destruction, environmental catastrophes, and metapopulation extinction. , 2002, Theoretical population biology.

[56]  Jordi Bascompte,et al.  Metapopulation models for extinction threshold in spatially correlated landscapes. , 2002, Journal of theoretical biology.

[57]  Bryan T Grenfell,et al.  Mathematical Tools for Planning Effective Intervention Scenarios for Sexually Transmitted Diseases , 2003, Sexually transmitted diseases.

[58]  L. Gustafsson,et al.  Density dependence in resource exploitation: empirical test of Levins’ metapopulation model , 1999 .

[59]  Otso Ovaskainen,et al.  Transient dynamics in metapopulation response to perturbation. , 2002, Theoretical population biology.

[60]  I. Hanski,et al.  Patch-occupancy dynamics in fragmented landscapes. , 1994, Trends in ecology & evolution.

[61]  Montgomery Slatkin,et al.  Competition and Regional Coexistence , 1974 .

[62]  Habitat destruction, habitat restoration and eigenvector-eigenvalue relations. , 2003, Mathematical biosciences.

[63]  Robert M. May,et al.  Dynamics of metapopulations : habitat destruction and competitive coexistence , 1992 .

[64]  Renato Casagrandi,et al.  A mesoscale approach to extinction risk in fragmented habitats , 1999, Nature.

[65]  Otso Ovaskainen,et al.  Long-term persistence of species and the SLOSS problem. , 2002, Journal of theoretical biology.

[66]  F. A. Pitelka,et al.  PRINCIPLES OF ANIMAL ECOLOGY , 1951 .

[67]  A. Carlson The effect of habitat loss on a deciduous forest specialist species: the White-backed Woodpecker (Dendrocopos leucotos) , 2000 .

[68]  R. Lande,et al.  Finite metapopulation models with density–dependent migration and stochastic local dynamics , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[69]  Atte Moilanen,et al.  PATCH OCCUPANCY MODELS OF METAPOPULATION DYNAMICS: EFFICIENT PARAMETER ESTIMATION USING IMPLICIT STATISTICAL INFERENCE , 1999 .

[70]  Karl P. Schmidt,et al.  Principles of Animal Ecology , 1950 .

[71]  Bruce T. Milne,et al.  Detecting Critical Scales in Fragmented Landscapes , 1997 .

[72]  M. Nowak,et al.  Habitat destruction and the extinction debt , 1994, Nature.

[73]  S. Karlin,et al.  A second course in stochastic processes , 1981 .

[74]  Mats Gyllenberg,et al.  Minimum Viable Metapopulation Size , 1996, The American Naturalist.

[75]  P. R. Levitt,et al.  The mathematical theory of group selection. I. Full solution of a nonlinear Levins E = E(x) model. , 1978, Theoretical population biology.

[76]  S. Harrison,et al.  Local extinction in a metapopulation context: an empirical evaluation , 1991 .