Nonlinear vibration of viscoelastic laminated composite plates

The dynamic behavior of laminated composite plates undergoing moderately large deflection is investigated by considering the viscoelastic properties of the material. Based on von Karman's nonlinear deformation theory and Boltzmann's superposition principle, nonlinear and hereditary type governing equations are derived through Hamilton's principle. Finite element analysis and the method of multiple scales are applied to examine the effect of large amplitude on the dissipative nature as well as on the natural frequency of viscoelastic laminated plates. Numerical experiments are performed for the nonlinear elastic case and linear viscoelastic case to check the validity of the procedure presented in this paper. Limitations of the method are discussed also. It is shown that the geometric nonlinearity does not affect the dissipative characteristics in the cases that have nonlinearity of perturbed order.