Particle Systems and Kinetic Equations Modeling Interacting Agents in High Dimension

In this paper we explore how concepts of high-dimensional data compression via random projections onto lower-dimensional spaces can be applied for tractable simulation of certain dynamical systems modeling complex interactions. In such systems, one has to deal with a large number of agents (typically millions) in spaces of parameters describing each agent of high dimension (thousands or more). Even with today’s powerful computers, numerical simulations of such systems are prohibitively expensive. We propose an approach for the simulation of dynamical systems governed by functions of adjacency matrices in high dimension, by random projections via Johnson–Lindenstrauss embeddings, and recovery by compressed sensing techniques. We show how these concepts can be generalized to work for associated kinetic equations by addressing the phenomenon of the delayed curse of dimension, known in information-based complexity for optimal numerical integration problems and measure quantization in high dimensions.

[1]  J. Carrillo,et al.  Double milling in self-propelled swarms from kinetic theory , 2009 .

[2]  Cecilia Clementi,et al.  Polymer reversal rate calculated via locally scaled diffusion map. , 2011, The Journal of chemical physics.

[3]  M. Maggioni,et al.  Determination of reaction coordinates via locally scaled diffusion map. , 2011, The Journal of chemical physics.

[4]  Holger Rauhut,et al.  Compressive Sensing with structured random matrices , 2012 .

[5]  Mikhail Belkin,et al.  Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering , 2001, NIPS.

[6]  Sanjoy Dasgupta,et al.  An elementary proof of a theorem of Johnson and Lindenstrauss , 2003, Random Struct. Algorithms.

[7]  P. Gruber,et al.  Optimum Quantization and Its Applications , 2004 .

[8]  C. Villani Topics in Optimal Transportation , 2003 .

[9]  M. Griebel,et al.  Optimized Tensor-Product Approximation Spaces , 2000 .

[10]  E. Novak,et al.  Tractability of Multivariate Problems Volume II: Standard Information for Functionals , 2010 .

[11]  Emmanuel J. Cand The Restricted Isometry Property and Its Implications for Compressed Sensing , 2008 .

[12]  R. DeVore,et al.  A Simple Proof of the Restricted Isometry Property for Random Matrices , 2008 .

[13]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[14]  Felipe Cucker,et al.  Emergent Behavior in Flocks , 2007, IEEE Transactions on Automatic Control.

[15]  Dimitris Achlioptas,et al.  Database-friendly random projections: Johnson-Lindenstrauss with binary coins , 2003, J. Comput. Syst. Sci..

[16]  Richard G. Baraniuk,et al.  Compressive Sensing , 2008, Computer Vision, A Reference Guide.

[17]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[18]  Seung-Yeal Ha,et al.  A simple proof of the Cucker-Smale flocking dynamics and mean-field limit , 2009 .

[19]  W. Rappel,et al.  Self-organization in systems of self-propelled particles. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  E. Tadmor,et al.  From particle to kinetic and hydrodynamic descriptions of flocking , 2008, 0806.2182.

[21]  Naomi Ehrich Leonard,et al.  Heterogeneous animal group models and their group-level alignment dynamics: an equation-free approach. , 2006, Journal of theoretical biology.

[22]  Anthony T. Patera,et al.  A Priori Convergence Theory for Reduced-Basis Approximations of Single-Parameter Elliptic Partial Differential Equations , 2002, J. Sci. Comput..

[23]  Richard G. Baraniuk,et al.  Random Projections of Smooth Manifolds , 2009, Found. Comput. Math..

[24]  D. Rovas,et al.  A Posteriori Error Bounds for Reduced-Basis Approximation of Parametrized Noncoercive and Nonlinear Elliptic Partial Differential Equations , 2003 .

[25]  Rob Stevenson,et al.  An Adaptive Wavelet Method for Solving High-Dimensional Elliptic PDEs , 2009 .

[26]  Massimo Fornasier,et al.  Theoretical Foundations and Numerical Methods for Sparse Recovery , 2010, Radon Series on Computational and Applied Mathematics.

[27]  S. Smale,et al.  On the mathematics of emergence , 2007 .

[28]  H. Woxniakowski Information-Based Complexity , 1988 .

[29]  Massimo Fornasier,et al.  Compressive Sensing and Structured Random Matrices , 2010 .

[30]  M. Wakin Manifold-Based Signal Recovery and Parameter Estimation from Compressive Measurements , 2010, 1002.1247.

[31]  M. Fornasier Domain decomposition methods for linear inverse problems with sparsity constraints , 2007 .

[32]  S. Sen Reduced-Basis Approximation and A Posteriori Error Estimation for Many-Parameter Heat Conduction Problems , 2008 .

[33]  A. Patera,et al.  A PRIORI CONVERGENCE OF THE GREEDY ALGORITHM FOR THE PARAMETRIZED REDUCED BASIS METHOD , 2012 .

[34]  Massimo Fornasier,et al.  Numerical Methods for Sparse Recovery , 2010 .

[35]  Jeff Moehlis,et al.  Coarse analysis of collective motion with different communication mechanisms. , 2008, Mathematical biosciences.

[36]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[37]  A. Bertozzi,et al.  State Transitions and the Continuum Limit for a 2D Interacting, Self-Propelled Particle System , 2006, nlin/0606031.

[38]  Michael Griebel,et al.  Tensor product type subspace splittings and multilevel iterative methods for anisotropic problems , 1995, Adv. Comput. Math..

[39]  Francisco Curbera Delayed Curse of Dimension for Gaussian Integration , 2000, J. Complex..

[40]  Anthony T. Patera,et al.  Global a priori convergence theory for reduced-basis approximations of single-parameter symmetric coercive elliptic partial differential equations , 2002 .

[41]  Stéphane Lafon,et al.  Diffusion maps , 2006 .

[42]  W. B. Johnson,et al.  Extensions of Lipschitz mappings into Hilbert space , 1984 .

[43]  Rachel Ward,et al.  New and Improved Johnson-Lindenstrauss Embeddings via the Restricted Isometry Property , 2010, SIAM J. Math. Anal..

[44]  Jos'e Antonio Carrillo,et al.  Stochastic Mean-Field Limit: Non-Lipschitz Forces & Swarming , 2010, 1009.5166.

[45]  Wolfgang Dahmen,et al.  Convergence Rates for Greedy Algorithms in Reduced Basis Methods , 2010, SIAM J. Math. Anal..

[46]  S. Graf,et al.  Foundations of Quantization for Probability Distributions , 2000 .

[47]  GuptaAnupam,et al.  An elementary proof of a theorem of Johnson and Lindenstrauss , 2003 .

[48]  L. Segel,et al.  Initiation of slime mold aggregation viewed as an instability. , 1970, Journal of theoretical biology.

[49]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[50]  Andrej Yu. Garnaev,et al.  On widths of the Euclidean Ball , 1984 .

[51]  B. Nadler,et al.  Diffusion maps, spectral clustering and reaction coordinates of dynamical systems , 2005, math/0503445.

[52]  조준학,et al.  Growth of human bronchial epithelial cells at an air-liquid interface alters the response to particle exposure , 2013, Particle and Fibre Toxicology.

[53]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[54]  H. Bungartz,et al.  Sparse grids , 2004, Acta Numerica.

[55]  R. DeVore,et al.  Compressed sensing and best k-term approximation , 2008 .

[56]  A. Bertozzi,et al.  Self-propelled particles with soft-core interactions: patterns, stability, and collapse. , 2006, Physical review letters.

[57]  Ann B. Lee,et al.  Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[58]  E. Candès The restricted isometry property and its implications for compressed sensing , 2008 .

[59]  Jos'e A. Carrillo,et al.  A well-posedness theory in measures for some kinetic models of collective motion , 2009, 0907.3901.

[60]  B. S. Kašin,et al.  DIAMETERS OF SOME FINITE-DIMENSIONAL SETS AND CLASSES OF SMOOTH FUNCTIONS , 1977 .

[61]  R. Illner,et al.  The mathematical theory of dilute gases , 1994 .