Error Analysis for Image-Based Rendering With Depth Information

We propose a new approach to quantitatively analyze the rendering quality of image-based rendering (IBR) algorithms with depth information. The resulting error bounds for synthesized views depend on IBR configurations including the depth and intensity estimate errors, the scene geometry and texture, the number of actual cameras, their positions and resolution. Specifically, the IBR error is bounded by the summation of three terms, highlighting the impact of using multiple actual cameras, the impact of the noise level at the actual cameras, and the impact of the depth accuracy. We also quantify the impact of occlusions and intensity discontinuities. The proposed methodology is applicable to a large class of common IBR algorithms and can be applied locally. Experiments with synthetic and real scenes show that the developed error bounds accurately characterize the rendering errors. In particular, the error bounds correctly characterize the decay rates of synthesized views' mean absolute errors as O(lambda-1) and O(lambda-2), where lambda is the local density of actual samples, for 2D and 3D scenes, respectively. Finally, we discuss the implications of the proposed analysis on camera placement, budget allocation, and bit allocation.

[1]  Richard Szeliski,et al.  High-accuracy stereo depth maps using structured light , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[2]  Ha T. Nguyen,et al.  Image-based rendering with depth information using the propagation algorithm , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[3]  Robert G. Gallager,et al.  Discrete Stochastic Processes , 1995 .

[4]  Lance Williams,et al.  View Interpolation for Image Synthesis , 1993, SIGGRAPH.

[5]  Richard Szeliski,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, International Journal of Computer Vision.

[6]  Minh N. Do,et al.  Multisensor Signal Processing: Theory and Algorithms for Image -Based Rendering and Multichannel Sampling , 2007 .

[7]  P. M. Prenter Splines and variational methods , 1975 .

[8]  Tsuhan Chen,et al.  Spectral analysis for sampling image-based rendering data , 2003, IEEE Trans. Circuits Syst. Video Technol..

[9]  Leonard McMillan,et al.  Plenoptic Modeling: An Image-Based Rendering System , 2023 .

[10]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[11]  Tsuhan Chen,et al.  A survey on image-based rendering - representation, sampling and compression , 2004, Signal Process. Image Commun..

[12]  Martial Hebert Active and passive range sensing for robotics , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[13]  Jean Ponce,et al.  Computer Vision: A Modern Approach , 2002 .

[14]  Ren Ng Fourier slice photography , 2005, ACM Trans. Graph..

[15]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[16]  Leonard McMillan,et al.  Post-rendering 3D warping , 1997, SI3D.

[17]  Marc Levoy,et al.  Light field rendering , 1996, SIGGRAPH.

[18]  Minh N. Do,et al.  On the bandlimitedness of the plenoptic function , 2005, IEEE International Conference on Image Processing 2005.

[19]  Harry Shum,et al.  Plenoptic sampling , 2000, SIGGRAPH.

[20]  Robert L. Cook,et al.  Stochastic sampling in computer graphics , 1988, TOGS.

[21]  M. Unser Sampling-50 years after Shannon , 2000, Proceedings of the IEEE.

[22]  Harry Shum,et al.  Image-based rendering , 2006, Found. Trends Comput. Graph. Vis..

[23]  Gene H. Golub,et al.  Matrix computations , 1983 .

[24]  E. Adelson,et al.  The Plenoptic Function and the Elements of Early Vision , 1991 .

[25]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[26]  Bruno O. Shubert,et al.  Random variables and stochastic processes , 1979 .

[27]  Steven M. Seitz,et al.  View morphing , 1996, SIGGRAPH.

[28]  Jr. Leonard McMillan,et al.  An Image-Based Approach to Three-Dimensional Computer Graphics , 1997 .

[29]  Andrew Zisserman,et al.  Multiple View Geometry in Computer Vision (2nd ed) , 2003 .

[30]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[31]  Tsuhan Chen,et al.  Active Rearranged Capturing of Image-Based Rendering Scenes—Theory and Practice , 2007, IEEE Transactions on Multimedia.

[32]  S. B. Kang,et al.  Survey of image-based representations and compression techniques , 2003, IEEE Trans. Circuits Syst. Video Technol..

[33]  Harry Shum,et al.  A Geometric Analysis of Light Field Rendering , 2004, International Journal of Computer Vision.

[34]  H. A. Reuver,et al.  The superposition of random sequences of events , 1966 .

[35]  Richard Szeliski,et al.  Layered depth images , 1998, SIGGRAPH.