Optimized Schwarz Waveform Relaxation for the Primitive Equations of the Ocean

In this article we are interested in the derivation of efficient domain decomposition methods for the viscous primitive equations of the ocean. We consider the rotating three-dimensional incompressible hydrostatic Navier-Stokes equations with free surface. Performing an asymptotic analysis of the system in the regime of small Rossby numbers, we compute an approximate Dirichlet to Neumann operator and build an optimized Schwarz waveform relaxation algorithm. We establish that the algorithm is well defined and provide numerical evidence of the convergence of the method.

[1]  Jean-Frédéric Gerbeau,et al.  Derivation of viscous Saint-Venant system for laminar shallow water , 2001 .

[2]  T. Jensen Open boundary conditions in stratified ocean models , 1998 .

[3]  A. Majda,et al.  Absorbing boundary conditions for the numerical simulation of waves , 1977 .

[4]  E. Blayo,et al.  Revisiting open boundary conditions from the point of view of characteristic variables , 2005 .

[5]  Matthias Ehrhardt,et al.  Discrete transparent boundary conditions for parabolic systems , 2006, Math. Comput. Model..

[6]  P. Delecluse,et al.  OPA 8.1 Ocean General Circulation Model reference manual , 1998 .

[7]  Herbert B. Keller,et al.  Space-time domain decomposition for parabolic problems , 2002, Numerische Mathematik.

[8]  Martin J. Gander A Waveform Relaxation Algorithm with Overlapping Splitting for Reaction Diffusion Equations , 1999 .

[9]  Carine Lucas,et al.  New Developments and Cosine Effect in the Viscous Shallow Water and Quasi-geostrophic Equations , 2008, Multiscale Model. Simul..

[10]  이호진,et al.  ROMS (Regional Ocean Modeling system)을 이용한 가시파래 기원지 및 이동 경로 추정 , 2012 .

[11]  Martin Jakob Gander,et al.  Overlapping Schwarz waveform relaxation for advection reaction diffusion equations , 2009 .

[12]  Alexander F. Shchepetkin,et al.  Open boundary conditions for long-term integration of regional oceanic models , 2001 .

[13]  Véronique Martin,et al.  Schwarz Waveform Relaxation Algorithms for the Linear Viscous Equatorial Shallow Water Equations , 2009, SIAM J. Sci. Comput..

[14]  Laurence Halpern,et al.  Artificial boundary conditions for incompletely parabolic perturbations of hyperbolic systems , 1991 .

[15]  E. Blayo,et al.  Comparison of different numerical methods used to handle the open boundary of a regional ocean circulation model of the Bay of Biscay , 2008 .

[16]  Cristián Zegers Ariztía,et al.  Manual , 2002 .

[17]  B. Cushman-Roisin Introduction to Geophysical Fluid Dynamics , 1994 .

[18]  ParabolicProblemsMartin J. Gander Overlapping Schwarz for Parabolic Problems , 2007 .

[19]  Alberto L. Sangiovanni-Vincentelli,et al.  The Waveform Relaxation Method for Time-Domain Analysis of Large Scale Integrated Circuits , 1982, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[20]  Rolf Jeltsch,et al.  Waveform Relaxation with Overlapping Splittings , 1995, SIAM J. Sci. Comput..

[21]  J. Lions,et al.  New formulations of the primitive equations of atmosphere and applications , 1992 .

[22]  Zi-Cai Li,et al.  Schwarz Alternating Method , 1998 .

[23]  Roger Temam,et al.  Some Mathematical Problems in Geophysical Fluid Dynamics , 2009 .

[24]  Véronique Martin,et al.  Schwarz Waveform Relaxation Method for the Viscous Shallow Water Equations , 2005 .

[25]  Martin J. Gander,et al.  Optimal Schwarz Waveform Relaxation for the One Dimensional Wave Equation , 2003, SIAM J. Numer. Anal..

[26]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[27]  M. Herzfeld,et al.  The role of numerical implementation on open boundary behaviour in limited area ocean models , 2009 .

[28]  R. Showalter Monotone operators in Banach space and nonlinear partial differential equations , 1996 .

[29]  Martin J. Gander,et al.  Optimized Schwarz Waveform Relaxation Methods for Advection Reaction Diffusion Problems , 2007, SIAM J. Numer. Anal..

[30]  Laurence Halpern,et al.  Discontinuous Galerkin and Nonconforming in Time Optimized Schwarz Waveform Relaxation for Heterogeneous Problems , 2008 .

[31]  Martin J. Gander,et al.  Optimized Schwarz Methods , 2006, SIAM J. Numer. Anal..

[32]  E. Titi,et al.  Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics , 2005, math/0503028.

[33]  Akio Arakawa,et al.  Computational Design of the Basic Dynamical Processes of the UCLA General Circulation Model , 1977 .