On sensitivity of Gauss–Christoffel quadrature
暂无分享,去创建一个
[1] Walter Gautschi,et al. THE INTERPLAY BETWEEN CLASSICAL ANALYSIS AND (NUMERICAL) LINEAR ALGEBRA — A TRIBUTE TO GENE H. GOLUB , 2002 .
[2] G. Golub,et al. A survey of matrix inverse eigenvalue problems , 1986 .
[3] W. Gautschi. On the construction of Gaussian quadrature rules from modified moments. , 1970 .
[4] I. Dhillon. Algorithm for the Symmetric Tridiagonal Eigenvalue/Eigenvector Problem , 1998 .
[5] W. Gautschi. Orthogonal Polynomials: Computation and Approximation , 2004 .
[6] H. V. D. Vorst,et al. The rate of convergence of Conjugate Gradients , 1986 .
[7] Z. Strakos,et al. On the real convergence rate of the conjugate gradient method , 1991 .
[8] Gene H. Golub,et al. Matrix Computation and the Theory of Moments , 1995 .
[9] Sergey V. Kuznetsov. Perturbation bounds of the krylov bases and associated hessenberg forms , 1997 .
[10] W. Gautschi. A Survey of Gauss-Christoffel Quadrature Formulae , 1981 .
[11] Gene H. Golub,et al. Matrix computations , 1983 .
[12] H. Keller,et al. Analysis of Numerical Methods , 1967 .
[13] Bruno Lang,et al. Computing the Bidiagonal SVD Using Multiple Relatively Robust Representations , 2006, SIAM J. Matrix Anal. Appl..
[14] Gene H. Golub,et al. The numerically stable reconstruction of a Jacobi matrix from spectral data , 1977, Milestones in Matrix Computation.
[15] Dirk P. Laurie,et al. Questions Related to Gaussian Quadrature Formulas and Two-Term Recursions , 1999 .
[16] Walter Gautschi,et al. Numerical Analysis , 1978, Mathemagics: A Magical Journey Through Advanced Mathematics.
[17] Philip Rabinowitz,et al. Methods of Numerical Integration , 1985 .
[18] Z. Strakos,et al. On error estimation in the conjugate gradient method and why it works in finite precision computations. , 2002 .
[19] Philip J. Davis,et al. Chapter 6 – Automatic Integration , 1984 .
[20] Walter Gautschi,et al. Error Bounds for Gaussian Quadrature of Analytic Functions , 1983 .
[21] Gene H. Golub,et al. Jacobi matrices for sums of weight functions , 1992 .
[22] W. Gautschi. Construction of Gauss-Christoffel quadrature formulas , 1968 .
[23] W. Gautschi. Numerical analysis: an introduction , 1997 .
[24] Dirk Laurie,et al. Computation of Gauss-type quadrature formulas , 2001 .
[25] Bernhard Beckermann,et al. How to choose modified moments , 1998 .
[26] G. Golub,et al. Updating and downdating of orthogonal polynomials with data fitting applications , 1991 .
[27] Walter Gautschi,et al. Is the recurrence relation for orthogonal polynomials always stable? , 1993 .
[28] Paul Nevai,et al. Distribution of zeros of orthogonal polynomials , 1979 .
[29] I︠u︡. V. Vorobʹev. Method of moments in applied mathematics , 1965 .
[30] G. Golub,et al. Bounds for the error in linear systems , 1979 .
[31] Shu-Fang Xu. A stability analysis of the jacobi matrix inverse eigenvalue problem , 1993 .
[32] W. Gautschi. On Generating Orthogonal Polynomials , 1982 .
[33] G. Stewart,et al. Estimating the Largest Eigenvalue of a Positive Definite Matrix , 1979 .
[34] W. Gautschi. Questions of Numerical Condition Related to Polynomials , 1978 .
[35] W. Gautschi,et al. THE INTERPLAY BETWEEN CLASSICAL ANALYSIS AND ( NUMERICAL ) LINEAR ALGEBRA — A TRIBUTE TO GENE , 2002 .
[36] B. Parlett,et al. On estimating the largest eigenvalue with the Lanczos algorithm , 1982 .
[37] H. V. D. Vorst,et al. The convergence behavior of ritz values in the presence of close eigenvalues , 1987 .
[38] S. Godunov,et al. Condition number of the Krylov bases and subspaces , 1996 .
[39] Gene H. Golub,et al. Calculation of Gauss quadrature rules , 1967, Milestones in Matrix Computation.
[40] W. Gragg,et al. The numerically stable reconstruction of Jacobi matrices from spectral data , 1984 .
[41] V. B. Uvarov. The connection between systems of polynomials orthogonal with respect to different distribution functions , 1969 .
[42] B. Parlett,et al. Relatively robust representations of symmetric tridiagonals , 2000 .
[43] H.-J. Fischer. On Generating Orthogonal Polynomials for Discrete Measures , 1998 .
[44] Inderjit S. Dhillon,et al. Orthogonal Eigenvectors and Relative Gaps , 2003, SIAM J. Matrix Anal. Appl..
[45] A. Stroud,et al. Gaussian quadrature formulas , 1966 .
[46] Bruno Lang,et al. On Symmetric Eigenproblems Induced by the Bidiagonal SVD , 2005, SIAM J. Matrix Anal. Appl..
[47] Dirk P. Laurie. Accurate recovery of recursion coe cients from Gaussian quadrature formulas , 1999 .
[48] G. Meurant,et al. The Lanczos and conjugate gradient algorithms in finite precision arithmetic , 2006, Acta Numerica.
[49] L. M. Milne-Thomson,et al. The Calculus Of Finite Differences , 1934 .
[50] C. Lanczos. Applied Analysis , 1961 .
[51] Liliana Borcea,et al. On the sensitivity of Lanczos recursions to the spectrum , 2005 .
[52] B. Parlett,et al. Multiple representations to compute orthogonal eigenvectors of symmetric tridiagonal matrices , 2004 .
[53] Paul N. Swarztrauber,et al. On Computing the Points and Weights for Gauss-Legendre Quadrature , 2002, SIAM J. Sci. Comput..
[54] James Demmel,et al. Accurate Singular Values of Bidiagonal Matrices , 1990, SIAM J. Sci. Comput..
[55] Gene H. Golub,et al. On the calculation of Jacobi Matrices , 1983 .
[56] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[57] Lothar Reichel,et al. Fast QR decomposition of Vandermonde-like matrices and polynomial least squares approximation , 1991 .
[58] Paul Van Dooren,et al. Sensitivity analysis of the Lanczos reduction , 1999 .
[59] Ren-Cang Li. Relative perturbation theory. III. More bounds on eigenvalue variation , 1997 .