Resonant wavepackets and shock waves in an atomtronic SQUID

The fundamental dynamics of ultracold atomtronic devices are reflected in their phonon modes of excitation. We probe such a spectrum by applying a harmonically driven potential barrier to a $^{23}$Na Bose-Einstein condensate in a ring-shaped trap. This perturbation excites phonon wavepackets. When excited resonantly, these wavepackets display a regular periodic structure. The resonant frequencies depend upon the particular configuration of the barrier, but are commensurate with the orbital frequency of a Bogoliubov sound wave traveling around the ring. Energy transfer to the condensate over many cycles of the periodic wavepacket motion causes enhanced atom loss from the trap at resonant frequencies. Solutions of the time-dependent Gross-Pitaevskii equation exhibit quantitative agreement with the experimental data. We also observe the generation of supersonic shock waves under conditions of strong excitation, and collisions of two shock wavepackets.

[1]  D. J. Frantzeskakis,et al.  Dark solitons in atomic Bose–Einstein condensates: from theory to experiments , 2010, 1004.4071.

[2]  Zachary Dutton,et al.  Observation of Quantum Shock Waves Created with Ultra- Compressed Slow Light Pulses in a Bose-Einstein Condensate , 2001, Science.

[3]  R. Kosloff,et al.  Absorbing boundaries for wave propagation problems , 1986 .

[4]  S. Shapiro JOSEPHSON CURRENTS IN SUPERCONDUCTING TUNNELING: THE EFFECT OF MICROWAVES AND OTHER OBSERVATIONS , 1963 .

[5]  H. Rubinsztein-Dunlop,et al.  Observation of shock waves in a large Bose-Einstein condensate , 2009, 0907.3989.

[6]  A. Kamchatnov,et al.  Stabilization of solitons generated by a supersonic flow of Bose-Einstein condensate past an obstacle. , 2007, Physical review letters.

[7]  Radiation of linear waves in the stationary flow of a Bose-Einstein condensate past an obstacle , 2006, cond-mat/0611149.

[8]  Seba Quantum chaos in the Fermi-accelerator model. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[9]  V. Grubelnik,et al.  Quantum Fermi acceleration in the resonant gaps of a periodically driven one-dimensional potential box , 2014 .

[10]  K. Burnett,et al.  Nonlinear mixing of quasiparticles in an inhomogeneous Bose condensate , 1998 .

[11]  Dynamics of a single particle in a horizontally shaken box , 1997, chao-dyn/9709021.

[12]  K. Helmerson,et al.  Superflow in a toroidal Bose-Einstein condensate: an atom circuit with a tunable weak link. , 2010, Physical review letters.

[13]  K. Isaieva,et al.  Vortex excitation in a stirred toroidal Bose-Einstein condensate , 2014, 1408.3293.

[14]  A. Smerzi,et al.  Large Amplitude Oscillations of a Bose Condensate , 1997 .

[15]  Thomas Liennard,et al.  Critical rotation of an annular superfluid Bose-Einstein condensate , 2012 .

[16]  E. Demler,et al.  Quantum flutter of supersonic particles in one-dimensional quantum liquids , 2012, Nature Physics.

[17]  M. Boshier,et al.  Creation of matter wave Bessel beams and observation of quantized circulation in a Bose–Einstein condensate , 2014 .

[18]  J. E. Zimmerman,et al.  QUANTUM STATES AND TRANSITIONS IN WEAKLY CONNECTED SUPERCONDUCTING RINGS. , 1967 .

[19]  A. Makowski,et al.  Exactly solvable models with time-dependent boundary conditions , 1991 .

[20]  Phillips,et al.  Generating solitons by phase engineering of a bose-einstein condensate , 2000, Science.

[21]  C. Lobb,et al.  Resistive flow in a weakly interacting Bose-Einstein condensate. , 2014, Physical review letters.

[22]  C. Clark The calculation of non-adiabatic transition probabilities , 1979 .

[23]  J. Steinhauer Observation of self-amplifying Hawking radiation in an analogue black-hole laser , 2014, Nature Physics.

[24]  Bogdan Damski Formation of shock waves in a Bose-Einstein condensate (8 pages) , 2004 .

[25]  W. Ketterle,et al.  Observation of Interference Between Two Bose Condensates , 1997, Science.

[26]  Panayotis G. Kevrekidis,et al.  The Defocusing Nonlinear Schrödinger Equation - From Dark Solitons to Vortices and Vortex Rings , 2015 .

[27]  W. Phillips,et al.  Driving phase slips in a superfluid atom circuit with a rotating weak link. , 2012, Physical review letters.

[28]  Resonant Hawking radiation in Bose–Einstein condensates , 2011, 1103.2994.

[29]  M. Zak,et al.  Supersonic effects and shock waves in a Bose–Einstein condensate , 2003 .

[30]  John Lambe,et al.  QUANTUM INTERFERENCE EFFECTS IN JOSEPHSON TUNNELING , 1964 .

[31]  Jean-Claude Saut,et al.  Travelling Waves for the Gross-Pitaevskii Equation II , 2007, 0711.2408.

[32]  C. Lobb,et al.  Interferometric Measurement of the Current-Phase Relationship of a Superfluid Weak Link , 2014, 1406.1095.

[33]  H. Smith,et al.  Bose–Einstein Condensation in Dilute Gases: Fermions , 2008 .

[34]  Russell P. Anderson,et al.  Partial-transfer absorption imaging: a versatile technique for optimal imaging of ultracold gases. , 2012, The Review of scientific instruments.

[35]  Matthew J. Davis,et al.  Quantum Gases: Finite Temperature and Non-Equilibrium Dynamics , 2013 .

[36]  D. Stamper-Kurn,et al.  Collective excitation interferometry with a toroidal Bose-Einstein condensate , 2012, 1210.0033.

[37]  C. Clark,et al.  Hysteresis in a quantized superfluid ‘atomtronic’ circuit , 2014, Nature.

[38]  C. Clark,et al.  Phase fluctuations in anisotropic Bose-Einstein condensates: From cigars to rings , 2010, 1007.0281.

[39]  S. Burger,et al.  Dark solitons in Bose-Einstein condensates , 1999, QELS 2000.

[40]  N. Pavloff,et al.  Generation of dispersive shock waves by the flow of a Bose-Einstein condensate past a narrow obstacle , 2011, 1111.5134.

[41]  C. Pethick,et al.  Bose–Einstein Condensation in Dilute Gases: Appendix. Fundamental constants and conversion factors , 2008 .

[42]  S. K. Adhikari,et al.  Fortran programs for the time-dependent Gross-Pitaevskii equation in a fully anisotropic trap , 2009, Comput. Phys. Commun..

[43]  K. Burnett,et al.  PHENOMENOLOGICAL DAMPING IN TRAPPED ATOMIC BOSE-EINSTEIN CONDENSATES , 1998, quant-ph/9801064.

[44]  J. Lambe,et al.  Macroscopic quantum interference in superconductors , 1965 .

[45]  D. Z. Anderson,et al.  Atomtronics: Ultracold-atom analogs of electronic devices , 2007 .

[46]  J. Chang,et al.  Formation of dispersive shock waves by merging and splitting Bose-Einstein condensates. , 2008, Physical review letters.

[47]  Danny C. Sorensen,et al.  Implicit Application of Polynomial Filters in a k-Step Arnoldi Method , 1992, SIAM J. Matrix Anal. Appl..

[48]  W. T. Hill,et al.  Spatial shaping for generating arbitrary optical dipole traps for ultracold degenerate gases. , 2014, The Review of scientific instruments.

[49]  A. Smerzi,et al.  Critical velocity for a toroidal Bose–Einstein condensate flowing through a barrier , 2012, 1208.0734.

[50]  R. Parentani,et al.  Nonlinear effects in time-dependent transonic flows: An analysis of analog black hole stability , 2015, 1502.04679.