Thermoelastic properties of microcracked polycrystals. Part II: The case of jointed polycrystalline TATB

[1]  D. Jeulin,et al.  Thermoelastic properties of microcracked polycrystals. Part I: Adequacy of Fourier-based methods for cracked elastic bodies , 2018, International Journal of Solids and Structures.

[2]  D. Jeulin,et al.  The thermoelastic response of cracked polycrystals with hexagonal symmetry , 2018, Philosophical Magazine.

[3]  D. Jeulin,et al.  3D Morphological modeling of a polycrystaline microstructure with non-convex, anisotropic grains , 2015 .

[4]  D. Jeulin,et al.  Numerical modeling of the thermal expansion of an energetic material , 2015 .

[5]  D. Jeulin,et al.  A Fourier-based numerical homogenization tool for an explosive material , 2015 .

[6]  F. Willot,et al.  Fourier-based schemes for computing the mechanical response of composites with accurate local fields , 2014, 1412.8398.

[7]  D. Luscher,et al.  Self-consistent modeling of the influence of texture on thermal expansion in polycrystalline TATB , 2014 .

[8]  D. Jeulin,et al.  A fast Fourier transform micromechanical upscaling method for the study of the thermal expansion of a TATB-based pressed explosive , 2014 .

[9]  P. Yan,et al.  Predictions of inter-granular cracking and dimensional changes of irradiated polycrystalline graphite under plane strain , 2014 .

[10]  Wei Zhang,et al.  Crystal State of 1,3,5-Triamino-2,4,6-Trinitrobenzene (TATB) Undergoing Thermal Cycling Process , 2010 .

[11]  O. Borodin,et al.  A molecular dynamics simulation study of crystalline 1,3,5-triamino-2,4,6-trinitrobenzene as a function of pressure and temperature. , 2009, The Journal of chemical physics.

[12]  W. Ludwig,et al.  Observations of Intergranular Stress Corrosion Cracking in a Grain-Mapped Polycrystal , 2008, Science.

[13]  F. Willot,et al.  Fast Fourier Transform computations and build-up of plastic deformation in 2D, elastic-perfectly plastic, pixelwise disordered porous media , 2008, 0802.2488.

[14]  D. M. Hoffman,et al.  Irreversible volume growth in polymer-bonded powder systems: Effects of crystalline anisotropy, particle size distribution, and binder strength , 2007 .

[15]  Maher Moakher,et al.  The Closest Elastic Tensor of Arbitrary Symmetry to an Elasticity Tensor of Lower Symmetry , 2006, cond-mat/0608311.

[16]  Mark Kachanov,et al.  Effective elasticity of rocks with closely spaced and intersecting cracks , 2006 .

[17]  A. Maiti,et al.  Mesoscale modeling of irreversible volume growth in powders of anisotropic crystals , 2006 .

[18]  J. Berryman Bounds and self-consistent estimates for elastic constants of random polycrystals with hexagonal, trigonal, and tetragonal symmetries , 2005 .

[19]  Heming Xiao,et al.  Molecular dynamics simulation of mechanical properties of TATB/fluorine-polymer PBXs along different surfaces , 2005 .

[20]  Z. Néda,et al.  On the size-distribution of Poisson Voronoi cells , 2004, cond-mat/0406116.

[21]  Salvatore Torquato,et al.  Thermal expansion of isotropic multiphase composites and polycrystals , 1997 .

[22]  Ole Sigmund,et al.  Design of materials with extreme thermal expansion using a three-phase topology optimization method , 1997, Smart Structures.

[23]  T. Mattfeldt Stochastic Geometry and Its Applications , 1996 .

[24]  J. Willis,et al.  The effect of spatial distribution on the effective behavior of composite materials and cracked media , 1995 .

[25]  J. C. Dallman,et al.  Temperature-dependent shock initiation of TATB-based high explosives , 1993 .

[26]  Y. Benveniste Universal Relations in Piezoelectric Composites With Eigenstress and Polarization Fields, Part II: Multiphase Media—Effective Behavior , 1993 .

[27]  Mark Kachanov,et al.  Effective Elastic Properties of Cracked Solids: Critical Review of Some Basic Concepts , 1992 .

[28]  G. Was,et al.  The Role of grain boundary misorientation in intergranular cracking of Ni-16Cr-9Fe in 360 °C argon and high-Purity water , 1992 .

[29]  D. Stoyan,et al.  Stochastic Geometry and Its Applications , 1989 .

[30]  Y. Benveniste,et al.  A new approach to the application of Mori-Tanaka's theory in composite materials , 1987 .

[31]  Z. Hashin Thermal expansion of polycrystalline aggregates , 1985 .

[32]  L. E. Scriven,et al.  Percolation and conduction on the 3D Voronoi and regular networks: a second case study in topological disorder , 1984 .

[33]  H. F. Rizzo,et al.  Growth of 1,3,5‐Triamino‐2,4,6,‐Trinitrobenzene (TATB). II. Control of growth by use of high‐Tg polymeric binders , 1981 .

[34]  J. Watt,et al.  Hashin-Shtrikman bounds on the effective elastic moduli of polycrystals with orthorhombic symmetry , 1979 .

[35]  H. F. Rizzo,et al.  Growth of 1,3,5‐Triamino‐2,4,6‐trinitrobenzene (TATB) I. Anisotropic thermal expansion , 1979 .

[36]  Bernard Budiansky,et al.  Seismic velocities in dry and saturated cracked solids , 1974 .

[37]  B. Rath,et al.  The relation between grain-boundary orientation and intergranular cracking , 1971 .

[38]  I. Bernstein The role of hydrogen in the embrittlement of iron and steel , 1970 .

[39]  Zvi Hashin,et al.  Effective thermal expansion coefficients and specific heats of composite materials , 1970 .

[40]  A. C. Larson,et al.  The crystal structure of 1,3,5-triamino-2,4,6-trinitrobenzene , 1965 .

[41]  Valery M. Levin,et al.  Effective elastic properties of matrix composites with transversely-isotropic phases , 2005 .

[42]  Z. Hashin Thermal expansion of polycrystalline aggregates: I. Exact analysis , 1984 .

[43]  B. Budiansky,et al.  Elastic moduli of a cracked solid , 1976 .

[44]  R. G. Naum,et al.  Thermal Expansion of Polycrystalline Graphite , 1970 .