Pre-processing, Registration and Quality Assessment of Adaptive Optics Assisted Retinal Images

In recent decades, adaptive optics (AO) technology has been embedded into retinal imaging devices, producing a new generation of instrument, which can provide retinal images with cellular resolution. This new technological advancement allows viewing of retinal microscopic structure, which is of great significance for the diagnosis, and subsequent treatment monitoring, of retinal pathologies that can result in visual loss. Developing compact and simplified AO assisted retinal imaging devices with an automated feature analysis is the current focus of interest for transferring AO technology to clinical use. In this study, we present an enhanced processing of sequences of retinal images obtained using an AO flood illumination system. We aim to provide image processing techniques for pre-processing, assessing the quality and image registration of cone photoreceptor and retinal nerve fiber layer (RNFL) images. Our results demonstrate the effectiveness of a wavelet based approach to correcting uneven illumination and automatic evaluation of image quality in terms of the results of image registration. In particular, we present the significance of image quality analysis while selecting a certain percentage of the sharpest images in a sequence for image registration. In order to register the images, we include methods that are specifically developed to measure tiny rotations in addition with correlation based techniques to correct for translational motion. We show that correcting for small rotations exhibits a significant improvement, especially at the edges of the image, which is important for creating larger mosaics. We then present the methods of investigating the characteristics of retinal nerve fiber bundles to discriminate RNFL images with good and poor striation. This enables feature comparison between healthy and glaucoma eyes. Finally, we discuss the implications of our results and possible future studies.

[1]  K. Takayama,et al.  High-Resolution Imaging of the Retinal Nerve Fiber Layer in Normal Eyes Using Adaptive Optics Scanning Laser Ophthalmoscopy , 2012, PloS one.

[2]  B. Masters,et al.  Fractal analysis of the vascular tree in the human retina. , 2004, Annual review of biomedical engineering.

[3]  Damon M. Chandler,et al.  ${\bf S}_{3}$: A Spectral and Spatial Measure of Local Perceived Sharpness in Natural Images , 2012, IEEE Transactions on Image Processing.

[4]  Melanie Grunwald,et al.  Foundations Of Image Science , 2016 .

[5]  Shu Liu,et al.  Evaluation of retinal nerve fiber layer progression in glaucoma: a study on optical coherence tomography guided progression analysis. , 2010, Investigative ophthalmology & visual science.

[6]  J. P. Lewis,et al.  Fast Template Matching , 2009 .

[7]  E. Peli,et al.  Computer measurement of retinal nerve fiber layer striations. , 1989, Applied optics.

[8]  L. T. DeCarlo On the meaning and use of kurtosis. , 1997 .

[9]  H. Quigley,et al.  The number of people with glaucoma worldwide in 2010 and 2020 , 2006, British Journal of Ophthalmology.

[10]  Chris Dainty,et al.  Illumination correction of retinal images using Laplace interpolation. , 2012, Applied optics.

[11]  George Wolberg,et al.  Robust image registration using log-polar transform , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[12]  A. Dubra,et al.  In vivo dark-field imaging of the retinal pigment epithelium cell mosaic. , 2013, Biomedical optics express.

[13]  Alan C. Bovik,et al.  A Statistical Evaluation of Recent Full Reference Image Quality Assessment Algorithms , 2006, IEEE Transactions on Image Processing.

[14]  George Wolberg,et al.  Image registration using log-polar mappings for recovery of large-scale similarity and projective transformations , 2005, IEEE Transactions on Image Processing.

[15]  H. Fujita,et al.  Detection of retinal nerve fiber layer defects on retinal fundus images for early diagnosis of glaucoma. , 2010, Journal of biomedical optics.

[16]  Hyun-Chul Kim,et al.  Subjective Image-Quality Estimation Based on Psychophysical Experimentation , 2007, PSIVT.

[17]  G. EICHMANN,et al.  Topologically invariant texture descriptors , 1988, Comput. Vis. Graph. Image Process..

[18]  雛元 孝夫,et al.  ウェーブレット変換の基礎 = Wavelets made easy , 2000 .

[19]  Miodrag Popovic,et al.  Texture analysis using 2D wavelet transform: theory and applications , 1999, 4th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Services. TELSIKS'99 (Cat. No.99EX365).

[20]  Fernando Mendes de Azevedo,et al.  Wavelet Filter to Attenuate the Background Activity and High Frequencies in EEG Signals Applied in the Automatic Identification of Epileptiform Events , 2013 .

[21]  M.,et al.  Statistical and Structural Approaches to Texture , 2022 .

[22]  Jonas Gårding Properties of fractal intensity surfaces , 1988, Pattern Recognit. Lett..

[23]  Franco Oberti,et al.  A new sharpness metric based on local kurtosis, edge and energy information , 2004, Signal Process. Image Commun..

[24]  R. Knighton,et al.  Microtubules contribute to the birefringence of the retinal nerve fiber layer. , 2005, Investigative ophthalmology & visual science.

[25]  Matthew T. Sheehan,et al.  Investigation of the isoplanatic patch and wavefront aberration along the pupillary axis compared to the line of sight in the eye , 2012, Biomedical optics express.

[26]  G. Ripandelli,et al.  Optical coherence tomography. , 1998, Seminars in ophthalmology.

[27]  Yogesan Kanagasingam,et al.  Texture analysis of retinal images to determine nerve fibre loss , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[28]  Hannes Fassold,et al.  A Perceptual Image Sharpness Metric Based on Local Edge Gradient Analysis , 2013, IEEE Signal Processing Letters.

[29]  D. Donaldson,et al.  A NEW CAMERA FOR STEREOSCOPIC FUNDUS PHOTOGRAPHY. , 1965, Archives of ophthalmology.

[30]  David Williams,et al.  Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope , 2011, Biomedical optics express.

[31]  M. Yaffe,et al.  Characterisation of mammographic parenchymal pattern by fractal dimension. , 1990, Physics in medicine and biology.

[32]  Filip Sroubek,et al.  Retinal image restoration by means of blind deconvolution. , 2011, Journal of biomedical optics.

[33]  Alfredo Dubra,et al.  Registration of 2D Images from Fast Scanning Ophthalmic Instruments , 2010, WBIR.

[34]  C. Hitzenberger,et al.  High speed spectral domain polarization sensitive optical coherence tomography of the human retina. , 2005, Optics express.

[35]  Phillip Bedggood,et al.  Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging. , 2008, Journal of biomedical optics.

[36]  C. Morandi,et al.  Registration of Translated and Rotated Images Using Finite Fourier Transforms , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[37]  Stefan Winkler,et al.  Perceptual blur and ringing metrics: application to JPEG2000 , 2004, Signal Process. Image Commun..

[38]  W. Drexler,et al.  Adaptive optics optical coherence tomography at 120,000 depth scans/s for non-invasive cellular phenotyping of the living human retina. , 2009, Optics express.

[39]  Enrico Grisan,et al.  Luminosity and contrast normalization in retinal images , 2005, Medical Image Anal..

[40]  Rodney Shaw,et al.  Signal-to-noise optimization of medical imaging systems , 1999 .

[41]  B J Melloni,et al.  How the retina works. , 1971, American Family Physician.

[42]  Michal Strzelecki,et al.  Texture Analysis Methods - A Review , 1998 .

[43]  Yinan Lu,et al.  An Application of Fourier-Mellin Transform in Image Registration , 2005, The Fifth International Conference on Computer and Information Technology (CIT'05).

[44]  Zheng Qin,et al.  A Novel Objective Image Quality Metric for Image Fusion Based on Renyi Entropy , 2008 .

[45]  Betul Sahin,et al.  Correction of the Aberrations of the Eye Using Adaptive Optics with Pupil Tracking , 2011 .

[46]  Anil K. Jain,et al.  Texture Analysis , 2018, Handbook of Image Processing and Computer Vision.

[47]  Alfred Sommer,et al.  How to use nerve fiber layer examination in the management of glaucoma. , 1987, Transactions of the American Ophthalmological Society.

[48]  Ling Fu,et al.  Characterization of collagen fibers by means of texture analysis of second harmonic generation images using orientation-dependent gray level co-occurrence matrix method. , 2012, Journal of biomedical optics.

[49]  Patrick J. Same Landmarks in the Historical Development of Fluorescein Angiography , 2007 .

[50]  Nacim Betrouni,et al.  Fractal and multifractal analysis: A review , 2009, Medical Image Anal..

[51]  A. Vladár,et al.  Image sharpness measurement in the scanning electron-microscope--part III. , 2006, Scanning.

[52]  Abdelhamid Abdesselam,et al.  Texture Image Retrieval Using Fourier Transform , 2009 .

[53]  B. N. Chatterji,et al.  An FFT-based technique for translation, rotation, and scale-invariant image registration , 1996, IEEE Trans. Image Process..

[54]  R. Kolář,et al.  Texture Analysis of the Retinal Nerve Fiber Layer in Fundus Images via Markov Random Fields , 2009 .

[55]  Sarah Eichmann,et al.  The Radon Transform And Some Of Its Applications , 2016 .

[56]  Karen M. Hampson,et al.  Adaptive optics and vision , 2008 .

[57]  Edward H. Adelson,et al.  Texture Classification , 2014, Computer Vision, A Reference Guide.

[58]  Ravi S. Jonnal,et al.  Imaging retinal nerve fiber bundles using optical coherence tomography with adaptive optics , 2011, Vision Research.

[59]  Ayyakkannu Manivannan,et al.  Automated drusen detection in retinal images using analytical modelling algorithms , 2011, Biomedical engineering online.

[60]  T. Hebert,et al.  Adaptive optics scanning laser ophthalmoscopy. , 2002, Optics express.

[61]  Rony Ferzli,et al.  Efficient implementation of kurtosis based no reference image sharpness metric , 2010, Electronic Imaging.

[62]  A. Hendrickson,et al.  Human photoreceptor topography , 1990, The Journal of comparative neurology.

[63]  Nicolas Chateau,et al.  Biomedical imaging: New view of the eye , 2011 .

[64]  J J Miller,et al.  Aberration correction by maximizing generalized sharpness metrics. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[65]  David Williams,et al.  The locus of fixation and the foveal cone mosaic. , 2005, Journal of vision.

[66]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[67]  Marco Lombardo,et al.  Influence of sampling window size and orientation on parafoveal cone packing density. , 2013, Biomedical optics express.

[68]  Lina J. Karam,et al.  A No-Reference Objective Image Sharpness Metric Based on the Notion of Just Noticeable Blur (JNB) , 2009, IEEE Transactions on Image Processing.

[69]  R. T. Smith,et al.  A novel registration method for retinal images based on local features , 2008, 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[70]  S. Singh,et al.  Evaluation of texture methods for image analysis , 2001, The Seventh Australian and New Zealand Intelligent Information Systems Conference, 2001.

[71]  R Rangayyan,et al.  A quantitative analysis of matrix alignment in ligament scars: A comparison of movement versus immobilization in an immature rabbit model , 1991, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[72]  Austin Roorda,et al.  Characterization of single-file flow through human retinal parafoveal capillaries using an adaptive optics scanning laser ophthalmoscope , 2011, Biomedical optics express.

[73]  P. Artal,et al.  Adaptive-optics ultrahigh-resolution optical coherence tomography. , 2004, Optics letters.

[74]  Toby P. Breckon,et al.  Fundamentals of Digital Image Processing: A Practical Approach with Examples in Matlab , 2011 .

[75]  J. Daugman Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[76]  Hiroshi Fujita,et al.  Detection of retinal nerve fiber layer defects in retinal fundus images using Gabor filtering , 2007, SPIE Medical Imaging.

[77]  C.-C. Jay Kuo,et al.  Texture analysis and classification with tree-structured wavelet transform , 1993, IEEE Trans. Image Process..

[78]  Jennifer J. Hunter,et al.  Imaging retinal mosaics in the living eye , 2011, Eye.

[79]  Francois Lacombe,et al.  Towards wide-field retinal imaging with adaptive optics , 2004 .

[80]  Maria Petrou,et al.  Multidimensional Co-occurrence Matrices for Object Recognition and Matching , 1996, CVGIP Graph. Model. Image Process..

[81]  A. Sommer,et al.  Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss. , 1991, Archives of ophthalmology.

[82]  L. Allen OCULAR FUNDUS PHOTOGRAPHY: SUGGESTIONS FOR ACHIEVING CONSISTENTLY GOOD PICTURES AND INSTRUCTIONS FOR STEREOSCOPIC PHOTOGRAPHY. , 1964, American journal of ophthalmology.

[83]  Sangyeol Lee,et al.  Validation of Retinal Image Registration Algorithms by a Projective Imaging Distortion Model , 2007, 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[84]  John S Werner,et al.  Photoreceptor counting and montaging of en-face retinal images from an adaptive optics fundus camera. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[85]  Austin Roorda,et al.  Retinal motion estimation in adaptive optics scanning laser ophthalmoscopy. , 2006, Optics express.

[86]  Krishnakumar Venkateswaran,et al.  Optical slicing of human retinal tissue in vivo with the adaptive optics scanning laser ophthalmoscope. , 2005, Applied optics.

[87]  L. Brain The Nervous System , 1963, Nature.

[88]  Rangaraj M. Rangayyan,et al.  Analysis directional features in images using Gabor filters , 1990, [1990] Proceedings. Third Annual IEEE Symposium on Computer-Based Medical Systems.

[89]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[90]  Sabalan Daneshvar,et al.  Retinal Image Registration Using Geometrical Features , 2013, Journal of Digital Imaging.

[91]  P. Erdös,et al.  Interpolation , 1953, An Introduction to Scientific, Symbolic, and Graphical Computation.

[92]  José Manuel Bravo,et al.  A New Supervised Method for Blood Vessel Segmentation in Retinal Images by Using Gray-Level and Moment Invariants-Based Features , 2011, IEEE Transactions on Medical Imaging.

[93]  Yung-Chang Chen,et al.  Texture features for classification of ultrasonic liver images , 1992, IEEE Trans. Medical Imaging.

[94]  H. Novotny,et al.  A Method of Photographing Fluorescence in Circulating Blood in the Human Retina , 1961, Circulation.

[95]  Bernd Hamann,et al.  Cellular resolution volumetric in vivo retinal imaging with adaptive optics-optical coherence tomography. , 2009, Optics express.

[96]  Chun-Shien Lu,et al.  Unsupervised texture segmentation via wavelet transform , 1997, Pattern Recognit..

[97]  P. Artal,et al.  The human eye is an example of robust optical design. , 2006, Journal of vision.

[98]  Christopher Dainty,et al.  High Resolution Flood Illumination Retinal Imaging System with Adaptive Optics , 2011 .

[99]  S. Pizer,et al.  The Image Processing Handbook , 1994 .

[100]  László G. Nyúl,et al.  Retinal image analysis for automated glaucoma risk evaluation , 2009, International Symposium on Multispectral Image Processing and Pattern Recognition.

[101]  C. Dainty,et al.  Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy. , 2006, Optics express.

[102]  Josien P. W. Pluim,et al.  Image registration , 2003, IEEE Transactions on Medical Imaging.

[103]  Viergever,et al.  Retrospective shading correction based on entropy minimization , 2000, Journal of microscopy.

[104]  Ravi S. Jonnal,et al.  Imaging cone photoreceptors in three dimensions and in time using ultrahigh resolution optical coherence tomography with adaptive optics , 2011, Biomedical optics express.

[105]  Nicholas Devaney,et al.  Adaptive Optics Technology for High-Resolution Retinal Imaging , 2012, Sensors.

[106]  John I. Clark,et al.  Fractal analysis of region-based vascular change in the normal and non-proliferative diabetic retina , 2002, Current eye research.

[107]  D. Casasent,et al.  Position, rotation, and scale invariant optical correlation. , 1976, Applied optics.

[108]  M. Sonka,et al.  Retinal Imaging and Image Analysis. , 2010, IEEE transactions on medical imaging.

[109]  W M Petroll,et al.  Quantitative analysis of stress fiber orientation during corneal wound contraction. , 1993, Journal of cell science.

[110]  A. Salvatelli,et al.  A comparative analysis of pre-processing techniques in colour retinal images , 2007 .

[111]  Prashant Parikh A Theory of Communication , 2010 .

[112]  S Faisan,et al.  Scanning ophthalmoscope retinal image registration using one-dimensional deformation fields. , 2011, Optics express.

[113]  Jian Li,et al.  Image matching for translation, rotation and uniform scaling by the Radon transform , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[114]  G. Cull,et al.  Relative course of retinal nerve fiber layer birefringence and thickness and retinal function changes after optic nerve transection. , 2008, Investigative ophthalmology & visual science.

[115]  J. Lowell,et al.  Automated retinal analysis , 2006 .

[116]  Bingqing Wang,et al.  Birefringence measurement of the retinal nerve fiber layer by swept source polarization sensitive optical coherence tomography , 2011, Optics express.

[117]  Toco Y P Chui,et al.  Variation of cone photoreceptor packing density with retinal eccentricity and age. , 2011, Investigative ophthalmology & visual science.

[118]  I. Deary,et al.  Retinal image analysis: Concepts, applications and potential , 2006, Progress in Retinal and Eye Research.

[119]  M. McGuire An image registration technique for recovering rotation, scale and translation parameters , 1998 .

[120]  Jirí Jan,et al.  Retrospective Illumination Correction of Retinal Images , 2010, Int. J. Biomed. Imaging.

[121]  Lina J. Karam,et al.  No-reference objective wavelet based noise immune image sharpness metric , 2005, IEEE International Conference on Image Processing 2005.

[122]  Béla Julesz,et al.  Visual Pattern Discrimination , 1962, IRE Trans. Inf. Theory.

[123]  Scot S. Olivier,et al.  Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging , 2011, Biomedical optics express.

[124]  Alfredo Dubra,et al.  Adaptive Optics Retinal Imaging – Clinical Opportunities and Challenges , 2013, Current eye research.

[125]  Tomasz Arodz Invariant Object Recognition Using Radon-based Transform , 2005, Comput. Artif. Intell..

[126]  Frans Vos,et al.  Detecting glaucomatous wedge shaped defects in polarimetric images , 2003, Medical Image Anal..

[127]  Yuan F. Zheng,et al.  Object Recognition Using Log-Polar Wavelet Mapping , 2008, 2008 20th IEEE International Conference on Tools with Artificial Intelligence.

[128]  Yogesan Kanagasingam,et al.  Retinal image registration and comparison for clinical decision support. , 2012, The Australasian medical journal.

[129]  Laurent M. Mugnier,et al.  Sub-pixel image registration with a maximum likelihood estimator. Application to the first adaptive optics observations of Arp 220 in the L' band , 2005 .

[130]  C. Costello Multi-Reference Frame Image Registration for Rotation, Translation, and Scale , 2008 .

[131]  E. R. Davies Introduction to Texture Analysis , 2008 .

[132]  Giulio Sandini,et al.  An anthropomorphic retina-like structure for scene analysis , 1980 .

[133]  Hayit Greenspan,et al.  Super-Resolution in Medical Imaging , 2009, Comput. J..

[134]  D R Williams,et al.  Supernormal vision and high-resolution retinal imaging through adaptive optics. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[135]  Yudong Zhang,et al.  Tracking features in retinal images of adaptive optics confocal scanning laser ophthalmoscope using KLT-SIFT algorithm , 2010, Biomedical optics express.

[136]  Mark A. Haidekker,et al.  Advanced Biomedical Image Analysis , 2010 .

[137]  Robert N Weinreb,et al.  A comparison of rates of change in neuroretinal rim area and retinal nerve fiber layer thickness in progressive glaucoma. , 2010, Investigative ophthalmology & visual science.

[138]  Lindsey S. Folio,et al.  Retinal nerve fibre layer and visual function loss in glaucoma: the tipping point , 2011, British Journal of Ophthalmology.

[139]  Christopher Dainty,et al.  Temporal Dynamics and Statistical Characteristics of Ocular Wavefront Aberrations and Accommodation , 2010 .

[140]  Peter F. Sharp,et al.  Automated microaneurysm detection using local contrast normalization and local vessel detection , 2006, IEEE Transactions on Medical Imaging.

[141]  H. Rao,et al.  Retinal nerve fiber layer and macular inner retina measurements by spectral domain optical coherence tomograph in Indian eyes with early glaucoma , 2012, Eye.

[142]  Joseph A. Izatt,et al.  Automatic cone photoreceptor segmentation using graph theory and dynamic programming , 2013, Biomedical optics express.

[143]  E. Peli Contrast in complex images. , 1990, Journal of the Optical Society of America. A, Optics and image science.

[144]  J. Flammer,et al.  The eye and the heart , 2013, European heart journal.

[145]  Yuan F. Zheng,et al.  Studies on log-polar transform for image registration and improvements using adaptive sampling and logarithmic spiral , 2009 .

[146]  Robert J Zawadzki,et al.  Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[147]  Jan Flusser,et al.  Image registration methods: a survey , 2003, Image Vis. Comput..

[148]  P F Sharp,et al.  The preprocessing of retinal images for the detection of fluorescein leakage. , 1999, Physics in medicine and biology.

[149]  David R Williams,et al.  Deconvolution of adaptive optics retinal images. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[150]  Anil K. Jain,et al.  Markov Random Field Texture Models , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[151]  Simon R. Arridge,et al.  A survey of hierarchical non-linear medical image registration , 1999, Pattern Recognit..

[152]  V.R.S Mani,et al.  Survey of Medical Image Registration , 2013 .

[153]  N. Boyd,et al.  Automated analysis of mammographic densities. , 1996, Physics in medicine and biology.

[154]  Bo Tao,et al.  Analysis of image registration noise due to rotationally dependent aliasing , 2003, J. Vis. Commun. Image Represent..

[155]  Alfred Haar,et al.  On the Theory of Orthogonal Function Systems , 2009 .

[156]  Jungtae Rha,et al.  Adaptive optics flood-illumination camera for high speed retinal imaging. , 2003, Optics express.

[157]  David S. Young Straight Lines and Circles in the Log-Polar Image , 2000, BMVC.

[158]  Esther de Ves,et al.  Selecting the structuring element for morphological texture classification , 2006, Pattern Analysis and Applications.

[159]  Horace W. Babcock,et al.  THE POSSIBILITY OF COMPENSATING ASTRONOMICAL SEEING , 1953 .

[160]  Xavier Levecq,et al.  Imaging microscopic structures in pathological retinas using a flood-illumination adaptive optics retinal camera , 2011, BiOS.

[161]  Lili Xu,et al.  A novel method for blood vessel detection from retinal images , 2010, Biomedical engineering online.

[162]  C. D. Kuglin,et al.  The phase correlation image alignment method , 1975 .

[163]  Guy Le Besnerais,et al.  Robust processing of images sequences produced by an adaptive optics retinal camera , 2013 .

[164]  R. Webb,et al.  Confocal scanning laser ophthalmoscope. , 1987, Applied optics.

[165]  Ravi S. Jonnal,et al.  Coherence gating and adaptive optics in the eye , 2003, SPIE BiOS.

[166]  L Frisén,et al.  Fundoscopy of nerve fiber layer defects in glaucoma. , 1973, Investigative ophthalmology.

[167]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[168]  R. Muller,et al.  Real-time correction of atmospherically degraded telescope images through image sharpening , 1974 .

[169]  Azriel Rosenfeld,et al.  A Comparative Study of Texture Measures for Terrain Classification , 1975, IEEE Transactions on Systems, Man, and Cybernetics.