Contrasting phenomena of quenching-induced piezoelectric performance in (0.4Na1/2Bi1/2TiO3-0.6BiFeO3)-xBaTiO3 ferroelectrics and relaxors

[1]  Pengrong Ren,et al.  A new family of high temperature lead-free Na1/2Bi1/2TiO3-BiFeO3 piezoelectrics , 2021, Materials Today Physics.

[2]  Xiangyang Cheng,et al.  Simultaneous enhancement of piezoelectric constant and thermal stability in lead-free Fe-doped 0.94(Na1/2Bi1/2)TiO3-0.06BaTiO3 ceramics , 2021, Journal of Alloys and Compounds.

[3]  Jianguo Zhu,et al.  Giant piezoelectric coefficient of PNN-PZT-based relaxor piezoelectric ceramics by constructing an R-T MPB , 2021 .

[4]  O. Sobol,et al.  Influence of oxygen vacancies on core‐shell formation in solid solutions of (Na,Bi)TiO 3 and SrTiO 3 , 2021, Journal of the American Ceramic Society.

[5]  H. Kleebe,et al.  Domain structure and phase evolution in quenched and furnace cooled lead-free Na1/2Bi1/2TiO3–BaTiO3 ceramics , 2021 .

[6]  Jingfeng Li,et al.  Lead-Free BiFeO3-BaTiO3 Ceramics with High Curie Temperature: Fine Compositional Tuning across the Phase Boundary for High Piezoelectric Charge and Strain Coefficients. , 2021, ACS applied materials & interfaces.

[7]  J. Rödel,et al.  Thermal depolarization and electromechanical hardening in Zn 2+ ‐doped Na 1/2 Bi 1/2 TiO 3 ‐BaTiO 3 , 2020, Journal of the American Ceramic Society.

[8]  S. Wada,et al.  Piezoelectricity in perovskite-type pseudo-cubic ferroelectrics by partial ordering of off-centered cations , 2020, Communications Materials.

[9]  Pengrong Ren,et al.  Compositionally driven relaxor to ferroelectric crossover in (1 − x)Na0.5Bi0.5TiO3–xBiFeO3 (0 ≤ x ≤ 0.60) , 2020 .

[10]  Jiagang Wu Perovskite lead-free piezoelectric ceramics , 2020, Journal of Applied Physics.

[11]  H. Nagata,et al.  Correlation between depolarization temperature and lattice distortion in quenched (Bi1/2Na1/2)TiO3-based ceramics , 2020, Applied Physics Express.

[12]  Dou Zhang,et al.  High piezoelectric response and excellent fatigue resistance in Rb-substituted BNT–BKT–BT ceramics , 2020, Journal of Materials Science.

[13]  P. García-Casillas,et al.  Effect of the sintering technique on the ferroelectric and d33 piezoelectric coefficients of Bi0.5(Na0.84K0.16)0.5TiO3 ceramic , 2019, Journal of Advanced Ceramics.

[14]  Ge Wang,et al.  Ultrahigh energy storage density lead-free multilayers by controlled electrical homogeneity , 2019, Energy & Environmental Science.

[15]  J. Rödel,et al.  Propensity for spontaneous relaxor-ferroelectric transition in quenched (Na1/2Bi1/2)TiO3-BaTiO3 compositions , 2018, Applied Physics Letters.

[16]  Guangzu Zhang,et al.  Colossal Negative Electrocaloric Effects in Lead-free Bismuth Ferrite-based Bulk Ferroelectric Perovskite for Solid-state Refrigeration , 2018 .

[17]  Bo Wu,et al.  Thermal depolarization regulation by oxides selection in lead-free BNT/oxides piezoelectric composites , 2018, Acta Materialia.

[18]  J. Ji,et al.  Enhanced piezoelectric properties of (Bi,Na)TiO3–(Bi,K)TiO3 ceramics prepared by two-step sintering process , 2018 .

[19]  S. Wada,et al.  Revealing the role of heat treatment in enhancement of electrical properties of lead-free piezoelectric ceramics , 2017 .

[20]  Chao Chen,et al.  Enhanced piezoresponse and electric field induced relaxor-ferroelectric phase transition in NBT-0.06BT ceramic prepared from hydrothermally synthesized nanoparticles , 2016 .

[21]  X. Lou,et al.  Defect dipole-induced poling characteristics and ferroelectricity of quenched bismuth ferrite-based ceramics , 2016 .

[22]  H. Yan,et al.  Tuning the electrocaloric enhancement near the morphotropic phase boundary in lead-free ceramics , 2016, Scientific Reports.

[23]  Tae Kwon Song,et al.  High‐Performance Lead‐Free Piezoceramics with High Curie Temperatures , 2015, Advanced materials.

[24]  Zhao Pan,et al.  Semiconductor/relaxor 0–3 type composites without thermal depolarization in Bi0.5Na0.5TiO3-based lead-free piezoceramics , 2015, Nature Communications.

[25]  Jacob L. Jones,et al.  BiFeO3 Ceramics: Processing, Electrical, and Electromechanical Properties , 2014 .

[26]  Manish Kumar,et al.  Evidences of magneto-electric coupling in BFO–BT solid solutions , 2013 .

[27]  C. Eom,et al.  Reliable polarization switching of BiFeO3 , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[28]  X. Tan,et al.  Creation and destruction of morphotropic phase boundaries through electrical poling: a case study of lead-free (Bi(1/2)Na(1/2))TiO3-BaTiO3 piezoelectrics. , 2012, Physical review letters.

[29]  Godhuli Sinha,et al.  Enhanced magnetic and dielectric properties of Eu and Co co-doped BiFeO3 nanoparticles , 2012 .

[30]  W. Jo,et al.  Influence of electric fields on the depolarization temperature of Mn-doped (1-x)Bi1/2Na1/2TiO3-xBaTiO3 , 2012 .

[31]  Junling Wang,et al.  Density functional theory plus U study of vacancy formations in bismuth ferrite , 2010 .

[32]  S. Suryanarayana,et al.  Synthesis and magnetoelectric studies on Na0.5Bi0.5TiO3–BiFeO3 solid solution ceramics , 2010 .

[33]  H. Nagata,et al.  Phase transition temperature and electrical properties of (Bi1∕2Na1∕2)TiO3–(Bi1∕2A1∕2)TiO3 (A=Li and K) lead-free ferroelectric ceramics , 2008 .

[34]  Jingfeng Li,et al.  Piezoelectric and ferroelectric properties of Bi-compensated (Bi1/2Na1/2 )TiO3-(Bi1/2K1/2)TiO3 lead-free piezoelectric ceramics , 2008 .

[35]  H. Nagata,et al.  Electrical Properties and Depolarization Temperature of (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3 Lead-free Piezoelectric Ceramics , 2006 .

[36]  Q. Yin,et al.  Electrical properties of Na1/2Bi1/2TiO3–BaTiO3 ceramics , 2002 .

[37]  Tu,et al.  Sequence of dielectric anomalies and high-temperature relaxation behavior in Na1/2Bi1/2TiO3. , 1994, Physical review. B, Condensed matter.

[38]  Tadashi Takenaka,et al.  (Bi1/2Na1/2)TiO3-BaTiO3 System for Lead-Free Piezoelectric Ceramics , 1991 .

[39]  X. Tan,et al.  Nanofragmentation of Ferroelectric Domains During Polarization Fatigue , 2015 .

[40]  L. E. Cross,et al.  History of Ferroelectrics , 1986 .