Asymptotically safe f(R)-gravity coupled to matter II: Global solutions

Abstract Ultraviolet fixed point functions of the functional renormalisation group equation for f ( R ) -gravity coupled to matter fields are discussed. The metric is split via the exponential parameterisation into a background metric and a fluctuating part, the former is chosen to be the one of a four-sphere. Also when scalar, fermion and vector fields are included global quadratic solutions exist as in the pure gravity case for discrete sets of values for some endomorphism parameters defining the coarse-graining scheme. The asymptotic, large-curvature behaviour of the fixed point functions is analysed for generic values of these parameters. Examples for global numerical solutions are provided. A special focus is given to the question whether matter fields might destabilise the ultraviolet fixed point function. Similar to a previous analysis of a polynomial, small-curvature approximation to the fixed point functions different classes for such functions are found.

[1]  Frank Saueressig,et al.  Asymptotically safe f(R)-gravity coupled to matter I: The polynomial case , 2018, Annals of Physics.

[2]  Roberto Percacci,et al.  Functional renormalization with fermions and tetrads , 2012, 1209.3649.

[3]  A. Eichhorn,et al.  Quantum gravity and Standard-Model-like fermions , 2016, 1611.05878.

[4]  Christoph Rahmede,et al.  Asymptotic safety of quantum gravity beyond Ricci scalars , 2017, 1801.00162.

[5]  Astrid Eichhorn,et al.  Status of the Asymptotic Safety Paradigm for Quantum Gravity and Matter , 2017, Foundations of physics.

[6]  Martin Reuter,et al.  Conformal sector of quantum Einstein gravity in the local potential approximation: Non-Gaussian fixed point and a phase of unbroken diffeomorphism invariance , 2008, 0804.1475.

[7]  Frank Saueressig,et al.  RG flows of Quantum Einstein Gravity on maximally symmetric spaces , 2014, 1401.5495.

[8]  Juergen A. Dietz,et al.  Asymptotic safety in the f(R) approximation , 2012, 1211.0955.

[9]  Jan M. Pawlowski,et al.  Quantum-gravity effects on a Higgs-Yukawa model , 2016, 1604.02041.

[10]  R. Lathe Phd by thesis , 1988, Nature.

[11]  R. Percacci,et al.  Matter matters in asymptotically safe quantum gravity , 2013, 1311.2898.

[12]  M. Reuter,et al.  Non-perturbative QEG corrections to the Yang–Mills beta function , 2010, 1005.1488.

[13]  Astrid Eichhorn,et al.  Top mass from asymptotic safety , 2017, 1707.01107.

[14]  A. Eichhorn,et al.  Is scale-invariance in gauge-Yukawa systems compatible with the graviton? , 2017, 1705.01858.

[15]  Jan M. Pawlowski,et al.  Asymptotic safety of gravity with matter , 2017, 1710.04669.

[16]  Jan M. Pawlowski,et al.  Asymptotic safety of gravity-matter systems , 2015, 1510.07018.

[17]  Tim R. Morris The Exact renormalization group and approximate solutions , 1994 .

[18]  Roberto Percacci,et al.  The running gravitational couplings , 1998 .

[19]  Jan Martin Pawlowski,et al.  Scaling solutions for dilaton quantum gravity , 2016, 1605.01858.

[20]  B. Knorr Infinite order quantum-gravitational correlations , 2017, 1710.07055.

[21]  C. Wetterich,et al.  Exact evolution equation for the effective potential , 1993, 1710.05815.

[22]  Frank Saueressig,et al.  A proper fixed functional for four-dimensional Quantum Einstein Gravity , 2015, 1504.07656.

[23]  Astrid Eichhorn,et al.  An asymptotically safe solution to the U(1) triviality problem , 2017, 1702.07724.

[24]  Peter Labus,et al.  Asymptotic safety in an interacting system of gravity and scalar matter , 2015, 1512.01589.

[25]  Christoph Rahmede,et al.  Investigating the ultraviolet properties of gravity with a Wilsonian renormalization group equation , 2008, 0805.2909.

[26]  Peter Labus,et al.  Background independence in a background dependent renormalization group , 2016, 1603.04772.

[27]  C. Ross Found , 1869, The Dental register.

[28]  J. Pawlowski,et al.  Chiral fermions in asymptotically safe quantum gravity , 2016, The European Physical Journal C.

[29]  Roberto Percacci,et al.  Search of scaling solutions in scalar–tensor gravity , 2015, 1501.00888.

[30]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[31]  Astrid Eichhorn,et al.  Quantum-gravity-induced matter self-interactions in the asymptotic-safety scenario , 2012, 1204.0965.

[32]  S. Lippoldt,et al.  Renormalized functional renormalization group , 2018, Physics Letters B.

[33]  Frank Saueressig,et al.  RG flows of Quantum Einstein Gravity in the linear-geometric approximation , 2014, 1412.7207.

[34]  Nobuyoshi Ohta,et al.  Asymptotic safety and field parametrization dependence in the f(R) truncation , 2018, Physical Review D.

[35]  Jan M. Pawlowski,et al.  Asymptotic freedom of Yang–Mills theory with gravity , 2011, 1101.5552.

[36]  M. Rubin,et al.  Eigenvalues and degeneracies for n‐dimensional tensor spherical harmonics , 1984 .

[37]  Roberto Percacci,et al.  Renormalization group flow in scalar-tensor theories: I , 2009, 0911.0386.

[38]  Astrid Eichhorn,et al.  Light fermions in quantum gravity , 2011, 1104.5366.

[39]  Martin Reuter,et al.  Nonperturbative evolution equation for quantum gravity , 1998 .

[40]  D. Litim Optimized renormalization group flows , 2001, hep-th/0103195.

[41]  Frank Saueressig,et al.  Fixed-Functionals of three-dimensional Quantum Einstein Gravity , 2012, Journal of High Energy Physics.

[42]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[43]  Juergen A. Dietz,et al.  The local potential approximation in the background field formalism , 2013, Journal of High Energy Physics.

[44]  Peter Labus,et al.  Asymptotic safety in $O(N)$ scalar models coupled to gravity , 2015, 1505.05393.

[45]  M.Reuter Nonperturbative Evolution Equation for Quantum Gravity , 1996, hep-th/9605030.

[46]  Nobuyoshi Ohta,et al.  Renormalization group equation and scaling solutions for f(R) gravity in exponential parametrization , 2015, 1511.09393.

[47]  Juergen A. Dietz,et al.  Redundant operators in the exact renormalisation group and in the f (R) approximation to asymptotic safety , 2013, Journal of High Energy Physics.

[48]  M. Yamada,et al.  Non-minimal coupling in Higgs–Yukawa model with asymptotically safe gravity , 2015, 1510.03734.

[49]  D. Litim Optimisation of the exact renormalisation group , 2000, hep-th/0005245.

[50]  Astrid Eichhorn,et al.  Upper bound on the Abelian gauge coupling from asymptotic safety , 2017, 1709.07252.

[51]  Nobuyoshi Ohta,et al.  Flow equation for $f(R)$ gravity and some of its exact solutions , 2015, 1507.00968.

[52]  Astrid Eichhorn,et al.  Viability of quantum-gravity induced ultraviolet completions for matter , 2017, 1705.02342.

[53]  Juergen A. Dietz,et al.  Fixed point structure of the conformal factor field in quantum gravity , 2016, 1605.07636.

[54]  Jan Martin Pawlowski,et al.  Dilaton quantum gravity , 2013, 1304.7743.