Invariants additifs de dg-catégories

With the help of the tools of Quillen's homotopical algebra, we construct `the universal additive invariant', namely a functor from the category of small dg categories to an additive category, that inverts the Morita dg functors, transforms the semi-orthogonal decompositions in the sense of Bondal-Orlov into direct sums and which is universal for these properties. We compare our construction with that of Bondal-Larsen-Lunts. ----- A l'aide des outils de l'algebre homotopique de Quillen, on construit `l'invariant additif universel', c'est-a-dire un foncteur defini sur la categorie des petites dg-categories et a valeurs dans une categorie additive qui rend inversibles les dg-foncteurs de Morita, transforme les decompositions semi-orthogonales au sens de Bondal-Orlov en sommes directes et qui est universel pour ces proprietees. Nous comparons notre construction a celle de Bondal-Larsen-Lunts.

[1]  A. Neeman The K -Theory of Triangulated Categories , 2005 .

[2]  B. Toën The homotopy theory of dg-categories and derived Morita theory , 2004, math/0408337.

[3]  Goncalo Tabuada Algèbre homologique Une structure de catégorie de modèles de Quillen sur la catégorie des dg-catégories , 2004, math/0407338.

[4]  M. Larsen,et al.  Grothendieck ring of pretriangulated categories , 2004, math/0401009.

[5]  R. Rouquier,et al.  Picard Groups for Derived Module Categories , 2003 .

[6]  V. Drinfeld DG quotients of DG categories , 2002, math/0210114.

[7]  Daniel Dugger,et al.  K-THEORY AND DERIVED EQUIVALENCES , 2002, math/0209084.

[8]  M. Schlichting,et al.  IDEMPOTENT COMPLETION OF TRIANGULATED CATEGORIES , 2001 .

[9]  N. Strickland,et al.  MODEL CATEGORIES (Mathematical Surveys and Monographs 63) , 2000 .

[10]  B. Keller On the cyclic homology of exact categories , 1999 .

[11]  Mark Hovey,et al.  Symmetric spectra , 1998, math/9801077.

[12]  Bernhard Keller,et al.  Invariance and localization for cyclic homology of DG algebras , 1998 .

[13]  A.Bondal,et al.  Semiorthogonal decomposition for algebraic varieties , 1995, alg-geom/9506012.

[14]  A. Bondal,et al.  Semiorthogonal decompositions for algebraic varieties. , 1995 .

[15]  Bernhard Keller,et al.  Deriving DG categories , 1994 .

[16]  Jeremy Rickard,et al.  Derived Equivalences As Derived Functors , 1991 .

[17]  Jeremy Rickard,et al.  Morita Theory for Derived Categories , 1989 .

[18]  Christian Kassel Cyclic homology, comodules, and mixed complexes , 1987 .

[19]  F. Waldhausen ALGEBRAIC K-THEORY OF SPACES I , 1978 .