Computational and in vitro studies of persistent activity: Edging towards cellular and synaptic mechanisms of working memory

[1]  Jianfeng Feng,et al.  Computational neuroscience , 1986, Behavioral and Brain Sciences.

[2]  D. Durstewitz,et al.  Beyond bistability: Biophysics and temporal dynamics of working memory , 2006, Neuroscience.

[3]  E. Callaway,et al.  Excitatory cortical neurons form fine-scale functional networks , 2005, Nature.

[4]  T. Pasternak,et al.  Working memory in primate sensory systems , 2005, Nature Reviews Neuroscience.

[5]  David A Lewis,et al.  Functional properties of fast spiking interneurons and their synaptic connections with pyramidal cells in primate dorsolateral prefrontal cortex. , 2005, Journal of neurophysiology.

[6]  E. Rolls,et al.  Synaptic and spiking dynamics underlying reward reversal in the orbitofrontal cortex. , 2004, Cerebral cortex.

[7]  G. V. Simpson,et al.  Phase Locking of Single Neuron Activity to Theta Oscillations during Working Memory in Monkey Extrastriate Visual Cortex , 2003, Neuron.

[8]  Christos Constantinidis,et al.  A Neural Circuit Basis for Spatial Working Memory , 2004, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[9]  D. Tank,et al.  Persistent neural activity: prevalence and mechanisms , 2004, Current Opinion in Neurobiology.

[10]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[11]  W. Senn,et al.  Top-down dendritic input increases the gain of layer 5 pyramidal neurons. , 2004, Cerebral cortex.

[12]  Peter E. Latham,et al.  Computing and Stability in Cortical Networks , 2004, Neural Computation.

[13]  Guy M. McKhann,et al.  Synfire Chains and Cortical SongsTemporal Modules of Cortical Activity , 2004 .

[14]  R. Douglas,et al.  Neuronal circuits of the neocortex. , 2004, Annual review of neuroscience.

[15]  Javier Yajeya,et al.  A Cholinergic Synaptically Triggered Event Participates in the Generation of Persistent Activity Necessary for Eye Fixation , 2004, The Journal of Neuroscience.

[16]  E. Rolls,et al.  What and Where in Visual Working Memory: A Computational Neurodynamical Perspective for Integrating fMRI and Single-Neuron Data , 2004, Journal of Cognitive Neuroscience.

[17]  Yuji Ikegaya,et al.  Synfire Chains and Cortical Songs: Temporal Modules of Cortical Activity , 2004, Science.

[18]  H. Markram,et al.  Synaptic dynamics control the timing of neuronal excitation in the activated neocortical microcircuit , 2004, The Journal of physiology.

[19]  P. Goldman-Rakic,et al.  Division of labor among distinct subtypes of inhibitory neurons in a cortical microcircuit of working memory. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[20]  N. Parga,et al.  Role of synaptic filtering on the firing response of simple model neurons. , 2004, Physical review letters.

[21]  Boris S. Gutkin,et al.  Turning On and Off with Excitation: The Role of Spike-Timing Asynchrony and Synchrony in Sustained Neural Activity , 2001, Journal of Computational Neuroscience.

[22]  Xiao-Jing Wang,et al.  A Model of Visuospatial Working Memory in Prefrontal Cortex: Recurrent Network and Cellular Bistability , 1998, Journal of Computational Neuroscience.

[23]  John Rinzel,et al.  A minimal, compartmental model for a dendritic origin of bistability of motoneuron firing patterns , 1995, Journal of Computational Neuroscience.

[24]  S. Amari Dynamics of pattern formation in lateral-inhibition type neural fields , 1977, Biological Cybernetics.

[25]  J. Cowan,et al.  A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue , 1973, Kybernetik.

[26]  Xiao-Jing Wang,et al.  Effects of Neuromodulation in a Cortical Network Model of Object Working Memory Dominated by Recurrent Inhibition , 2004, Journal of Computational Neuroscience.

[27]  H. Sebastian Seung,et al.  The Autapse: A Simple Illustration of Short-Term Analog Memory Storage by Tuned Synaptic Feedback , 2004, Journal of Computational Neuroscience.

[28]  Jean-Marc Fellous,et al.  Regulation of persistent activity by background inhibition in an in vitro model of a cortical microcircuit. , 2003, Cerebral cortex.

[29]  H. Seung,et al.  Robust persistent neural activity in a model integrator with multiple hysteretic dendrites per neuron. , 2003, Cerebral cortex.

[30]  Nicolas Brunel,et al.  Dynamics and plasticity of stimulus-selective persistent activity in cortical network models. , 2003, Cerebral cortex.

[31]  R. Romo,et al.  A recurrent network model of somatosensory parametric working memory in the prefrontal cortex. , 2003, Cerebral cortex.

[32]  J. Seamans,et al.  Synaptic basis of persistent activity in prefrontal cortex in vivo and in organotypic cultures. , 2003, Cerebral cortex.

[33]  Gianluigi Mongillo,et al.  Selective delay activity in the cortex: phenomena and interpretation. , 2003, Cerebral cortex.

[34]  P. Goldman-Rakic,et al.  Temporally irregular mnemonic persistent activity in prefrontal neurons of monkeys during a delayed response task. , 2003, Journal of neurophysiology.

[35]  Andrea Hasenstaub,et al.  Persistent cortical activity: mechanisms of generation and effects on neuronal excitability. , 2003, Cerebral cortex.

[36]  J. Bassett,et al.  Persistent neural activity in head direction cells. , 2003, Cerebral cortex.

[37]  Bard Ermentrout Dynamical Consequences of Fast-Rising, Slow-Decaying Synapses in Neuronal Networks , 2003, Neural Computation.

[38]  A. Lansner,et al.  A working memory model based on fast Hebbian learning , 2003, Network.

[39]  D. Amit,et al.  Retrospective and prospective persistent activity induced by Hebbian learning in a recurrent cortical network , 2003, The European journal of neuroscience.

[40]  E. Rolls,et al.  Attention and working memory: a dynamical model of neuronal activity in the prefrontal cortex , 2003, The European journal of neuroscience.

[41]  H. Sompolinsky,et al.  Temporal integration by calcium dynamics in a model neuron , 2003, Nature Neuroscience.

[42]  D. McCormick,et al.  Turning on and off recurrent balanced cortical activity , 2003, Nature.

[43]  R. Yuste,et al.  Attractor dynamics of network UP states in the neocortex , 2003, Nature.

[44]  Xiao-Jing Wang,et al.  Robust Spatial Working Memory through Homeostatic Synaptic Scaling in Heterogeneous Cortical Networks , 2003, Neuron.

[45]  Maria V. Sanchez-Vives,et al.  Cellular and network mechanisms of slow oscillatory activity (<1 Hz) and wave propagations in a cortical network model. , 2003, Journal of neurophysiology.

[46]  D J Amit,et al.  Multiple-object working memory--a model for behavioral performance. , 2003, Cerebral cortex.

[47]  Ranulfo Romo,et al.  Basic mechanisms for graded persistent activity: discrete attractors, continuous attractors, and dynamic representations , 2003, Current Opinion in Neurobiology.

[48]  Daniel J. Amit,et al.  Spike-Driven Synaptic Dynamics Generating Working Memory States , 2003, Neural Computation.

[49]  H. Sompolinsky,et al.  Mexican hats and pinwheels in visual cortex , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[50]  Nicolas Brunel,et al.  Mean-field theory of recurrent cortical networks: Working memory circuits with irregularly spiking neurons , 2003 .

[51]  Germán Mato,et al.  Asynchronous States and the Emergence of Synchrony in Large Networks of Interacting Excitatory and Inhibitory Neurons , 2003, Neural Computation.

[52]  Xiao-Jing Wang,et al.  The dynamical stability of reverberatory neural circuits , 2002, Biological Cybernetics.

[53]  M. Hasselmo,et al.  Graded persistent activity in entorhinal cortex neurons , 2002, Nature.

[54]  Terrence J. Sejnowski,et al.  Integrate-and-Fire Neurons Driven by Correlated Stochastic Input , 2002, Neural Computation.

[55]  A. Koulakov,et al.  Model for a robust neural integrator , 2002, Nature Neuroscience.

[56]  Daniel Durstewitz,et al.  The computational role of dopamine D1 receptors in working memory , 2002, Neural Networks.

[57]  Bijan Pesaran,et al.  Temporal structure in neuronal activity during working memory in macaque parietal cortex , 2000, Nature Neuroscience.

[58]  L. Barrett‐Lennard,et al.  Graded persistent activity in entorhinal cortex neurons , 2002 .

[59]  André Longtin,et al.  Noise-induced stabilization of bumps in systems with long-range spatial coupling , 2001 .

[60]  R. Yuste,et al.  Dynamics of Spontaneous Activity in Neocortical Slices , 2001, Neuron.

[61]  Xiao-Jing Wang Synaptic reverberation underlying mnemonic persistent activity , 2001, Trends in Neurosciences.

[62]  Carson C. Chow,et al.  Stationary Bumps in Networks of Spiking Neurons , 2001, Neural Computation.

[63]  Néstor Parga,et al.  A model of the IT-PF network in object working memory which includes balanced persistent activity and tuned inhibition , 2001, Neurocomputing.

[64]  D. Hansel,et al.  Existence and stability of persistent states in large neuronal networks. , 2001, Physical review letters.

[65]  German Barrionuevo,et al.  Synaptic targets of the intrinsic axon collaterals of supragranular pyramidal neurons in monkey prefrontal cortex , 2001, The Journal of comparative neurology.

[66]  A. Koulakov,et al.  Properties of synaptic transmission and the global stability of delayed activity states , 2001, Network.

[67]  M. Steriade Corticothalamic resonance, states of vigilance and mentation , 2000, Neuroscience.

[68]  T. Sejnowski,et al.  Neurocomputational models of working memory , 2000, Nature Neuroscience.

[69]  Maria V. Sanchez-Vives,et al.  Cellular and network mechanisms of rhythmic recurrent activity in neocortex , 2000, Nature Neuroscience.

[70]  P. Goldman-Rakic,et al.  Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. , 2000, Cerebral cortex.

[71]  J Rinzel,et al.  Influence of temporal correlation of synaptic input on the rate and variability of firing in neurons. , 2000, Biophysical journal.

[72]  José M Delgado-Garcı́a,et al.  Why move the eyes if we can move the head? , 2000, Brain Research Bulletin.

[73]  Daniel D. Lee,et al.  Stability of the Memory of Eye Position in a Recurrent Network of Conductance-Based Model Neurons , 2000, Neuron.

[74]  T. Sejnowski,et al.  Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex. , 2000, Journal of neurophysiology.

[75]  N. Brunel Persistent activity and the single-cell frequency–current curve in a cortical network model , 2000, Network.

[76]  X. Wang,et al.  Synaptic Basis of Cortical Persistent Activity: the Importance of NMDA Receptors to Working Memory , 1999, The Journal of Neuroscience.

[77]  R. Romo,et al.  Neuronal correlates of parametric working memory in the prefrontal cortex , 1999, Nature.

[78]  Y Agid,et al.  Temporal limits of spatial working memory in humans , 1998, The European journal of neuroscience.

[79]  J. Fellous,et al.  A role for NMDA-receptor channels in working memory , 1998, Nature Neuroscience.

[80]  D. Amit,et al.  Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex. , 1997, Cerebral cortex.

[81]  Charles Q. Wu,et al.  Local circuit neurons of macaque monkey striate cortex: IV. neurons of laminae 1‐3A , 1997, The Journal of comparative neurology.

[82]  H. Sompolinsky,et al.  Chaos in Neuronal Networks with Balanced Excitatory and Inhibitory Activity , 1996, Science.

[83]  H S Seung,et al.  How the brain keeps the eyes still. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[84]  K. Zhang,et al.  Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[85]  D. Plenz,et al.  Neural dynamics in cortex-striatum co-cultures—II. Spatiotemporal characteristics of neuronal activity , 1996, Neuroscience.

[86]  D. Amit The Hebbian paradigm reintegrated: Local reverberations as internal representations , 1995, Behavioral and Brain Sciences.

[87]  H. Sompolinsky,et al.  Theory of orientation tuning in visual cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[88]  P. Goldman-Rakic Cellular basis of working memory , 1995, Neuron.

[89]  A. Lansner,et al.  Low spiking rates in a population of mutually exciting pyramidal cells , 1995 .

[90]  Terrence J. Sejnowski,et al.  RAPID STATE SWITCHING IN BALANCED CORTICAL NETWORK MODELS , 1995 .

[91]  J. Fuster Memory in the cerebral cortex , 1994 .

[92]  David L. Sparks,et al.  Saccades to remembered target locations: an analysis of systematic and variable errors , 1994, Vision Research.

[93]  D. Zipser,et al.  A spiking network model of short-term active memory , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[94]  J. Lund,et al.  Local circuit neurons of macaque monkey striate cortex: III. Neurons of laminae 4B, 4A, and 3B , 1997, The Journal of comparative neurology.

[95]  D. Amit,et al.  Quantitative study of attractor neural networks retrieving at low spike rates: II. Low-rate retrieval in symmetric networks , 1991 .

[96]  Guido Bugmann,et al.  Summation and multiplication: two distinct operation domains of leaky integrate-and-fire neurons , 1991 .

[97]  Daniel J. Amit,et al.  Quantitative Study of Attractor Neural Network Retrieving at Low Spike Rates: I , 1991 .

[98]  Moshe Abeles,et al.  Corticonics: Neural Circuits of Cerebral Cortex , 1991 .

[99]  Nava Rubin,et al.  Neural networks with low local firing rates , 1989 .

[100]  Buhmann Oscillations and low firing rates in associative memory neural networks. , 1989, Physical review. A, General physics.

[101]  A Treves,et al.  Associative memory neural network with low temporal spiking rates. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[102]  P. Goldman-Rakic,et al.  Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. , 1989, Journal of neurophysiology.

[103]  D. O. Hebb,et al.  The organization of behavior , 1988 .

[104]  P. Somogyi,et al.  Synaptic connections of morphologically identified and physiologically characterized large basket cells in the striate cortex of cat , 1983, Neuroscience.

[105]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[106]  M. Abeles Role of the cortical neuron: integrator or coincidence detector? , 1982, Israel journal of medical sciences.

[107]  B. Cohen The Vestibulo-Ocular Reflex Arc , 1974 .

[108]  R. L. Nó,et al.  VESTIBULO-OCULAR REFLEX ARC , 1933 .

[109]  H. Sompolinsky,et al.  13 Modeling Feature Selectivity in Local Cortical Circuits , 2022 .